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Bridge vibration characteristics estimation by Balanced Stochastic Realization (BSR) theory
based on ambient vibration
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1. Introduction: This study is to estimate the dynamic characteristics (frequency, damping and vibration mode) of bridge
by using balanced stochastic realization (BSR) theoryl’ 2 for ambient vibration. The numerical simulation for Langer
bridges was performed using BSR method I and I1. The dynamic characteristics estimation error was calculated for both
methods. The performance of the methods based on the estimation accuracy was observed.

2. Calculation process: Let’s Y(?) (r=01--N+2k~2) pe the measured data in finite-time for executing the balanced
stochastic realization. Block Teplitz and Hankel matrix are then found from the past and future response data blocky, e R™"

and Y, e R™™" respectively.

yk=1) - e y(N+k-2) YO yk+D) o ykeN-D)
v, = Y(k:*Z) Y(N+:k*3) v, - y(k:+1) Y(N:+ k) (1) KK
. B B : :Node number 1 Element number
yo - yN-D y@k—) e Y(N+2K-2) Fig. 1: Model bridge
The covariance matrix of measured data
F wo Lo 1 ip [YDT yfT] (2) Table-1: Model prope rties Table-2: Natural
ry, Iy N Yy Bri o0 ; ;
. . . L. dge characteristics | Units |Numerical value]
Covariance matrix were obtained by the LQ orthogonal decomposition of Effectvespn | L | sees | Freduency(Hz)
Ridge of the bridge f(m) 9.36
H Density of steel D (t/m) 7.85
data block matrix Young’s Modulus  |E@n?)|  21*10 Mode | Frequency (Hz)
Total mass of the bridge]  Ton 19.3 order
r, Iy L, O01]L uT |_21T (3) Total weight of bridge | Ton 189.17 Ist 1.749
r r = T AL(M?)| 00224 2nd 2.893
fp f L21 L22 0 Lzz sectional A2 (m?) 0.0123 3rd 5.69
ectonalarea s oows7 4th 7375
The matrix representation of LQ decomposition yields the next relation Ad()| 0006015 | (Sth 5416
11 (m%) 0.00066 6th 11.179
T T T T H i 4)
rpp =Lyly ) rfp =L,ly ' Fy=Lyl, +Lyly, (4) Moment ofneftia :i 224) g&g}é g: Eﬁg

K is greater than system order and it is defined as kK >n
(1) Method I: Full rank factorization of covariance matrixes rﬁand r_are
pp

Gk L

Amplitude(gal)

o ol A bl

1 1 1 1
[, =U,S25:2V,=LL" , Ty =US:25:2V, =MM’ (5)
Thus the singular value decomposition of the covariance matrix I Time(se0
L'r,M* =uln V' =U IV, (6) Fig. 2: White noise
1"4/\M5M
Here 11, is determined by ignoring the relatively small value of IL. The  ,———"—== mmg
12 34 s 8 7 8 9 h 1 2 3 4 5 6 1 8 o
dimension of state vector is n=dimII, . Observability and controllability ¥~ ~ 7~ e~ 7~ m
- : ! R S AVAV A
matrix are, P, =LUII,2 and Q, =HSZVMT (7) YT 2 s &5 6 7 8 9 by 73 & 5 & 7 8 9 °
R . Fia. 3: Vibration mode
From the definition of P, and Q, the state matrixes A c can be calculated as
. 16 gth
following, 14 7th
AP ®) g = 6
. . . = 5th
Where,p ‘", p '™ are respectively the last™ rows and first M rows of p i.e. 2 s 4th
- (3]
S 6 3rd
il [m+1 g
Im . m LT_ 4 2nd
P =P, ; P " =P, 2 1st
[m(k -1)] [mk] (9) %0 10 20 30 40 50 60 70 80 90 100
Repetition Number
Cc=E, U 2Where, educe matrix, g_=[1_ 0, - 0] (10)

Fig.4: Frequencies (Hz)
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(2) Method _: State variable from the data block can be written as R I .
- A T TSR PR A R R e L
_ 2\ T -1 nxN 0 20 3 5 9
Xy =5 V- M™7Y,eR (11) 0.05 —2—2 ‘xo 40 .»o“ f 70.5? c? 100th
Here the matrix formed by the last rows of X, eR™ be e b oA L D I
R v 12 00: 0 20 30 40 50 60 70 80 90 100
X, =X, [a] - [N-1]eR (12) I O N VO A VO
Again the matrix formed by the first N-1 rows of X, be o0 % % © 0 ® 1 ® % 0
o O .
X=X [2] - [NJJeR™" (13) g_ B R L W B L S -
E 0.0 0 20. 0 e/ 80 100
Data block from the measured data < SO R S DY PP S PO N N T
0 v oo, N % e e e o, v
Yk:[Y(k) y(k+N—l)]e R™N (14) o:s 0 20 30 40 50 _60_70_8 9 100
And matrix by deleting the last 1 rows 0 X S R Yl ttae AR e L]
R oo ogs 10 20 30 40 50 60 70 8 90 100
Y =[yk) - - yk+N=2)]eR™M1 : . R
=l 4 e (15) e Al e N e g 20
Thus we find the state space equation combining the above matrixes ol 20 N © 0 & 0 @ % 100
)A<k+1 _ A )‘( 4 Pw o '.‘.. ‘.."..'...-"'.‘.'-'"."-'. '.,..'..-"."“-:‘..“.. 1t
\A(kickpV (16) 10 20 3 4 5 6 70 8 % 100
p. €R™MD 00 p, e R0 oo matrix Repetition Number
. C . . Fig. 5: Dampin
Right multiplying % ™ in the above 9 pIng
equation and A , c matrix is thus Table-3: Estimation accuracy comparison
. Mode ctho Frequency(Hz Damping
Obta|n6d as order Method Analytical| mean |Esterr(%)| Std. | CV(%) |[Assumed| mean |Esterr(%)| Std. | CV(%)
1st methodi| o 1.749 151] 0.0178] 1.016] 002 0.0250]  25.00] 0.0121] 48.509
A YO o method I~ 1.788 3.77] 00273[ 1527 0.02] 0.0465] 13250 0.0230] 49.45
=( A X DK X )T ond |methodi] 5 oo 2.894 1.05] 0.0190] 0.065 0.02[ 0.0214 7.00[ 0.0077| 36.067
Cc Yo K Kk (17) method 1] = 2.919 1.92] 0.0274] 0938 002] 00197 1.50] 0.0081| 40.84
method | 5.684 1.05] 0.0329] 0578 _ 0.02| 0.0204 2.00| 0.0050| 24.416
3 Tmetnoan| >%%° 5.698 1.29] 00417] 0731 002| 0.0173] 13.50] 0.0050| 29.083
] . method | 7.375 0.00] 0.0346] 0.469] _ 0.02] 0.0201 0.50] 0.0052| 25.821
Matrixes A andC thus obtained by the A Imethoc ] 7® 7.376 0.01] 0.0434] 0588] 002] 0.0155] 2250 0.0041] 26.723
method | 9.411 0.84] 0.0400| 0425 _ 0.02] 0.0207 3.50] 0.0044| 21.046
both methods Dynamlc Characterlstlcs Sth method I 9.491 9.380 1.17| 0.0507| 0.541 0.02 0.0188 6.00 0.0052| 27.658
oth |method 1] | 11162 0.92] 0.0423] 0379] 0.02| 0.0215 7.50] 0.0041| 19.227
of the system then found by method I 11.099 0.35] 0.0590| 0531] 0.02] 0.0215 7.50| 0.0052| 24.079
method | 14.167 048] 0.0521[ 0367] 0.02] 0.0232] 16.00[ 0.0037| 15.927
. . " Tmethod ] 4%° 12048 0.36] 0.0806] 0573 0.02] 0.0257] 2850[ 0.0054] 20.871
eigenvalue analysis of the above two ot |method ] -~ 15515 0.67] 0.0507] 0.385] _ 0.02| 0.0257]  28.50] 0.0043| 16.709
method I - 15.400 0.07] 0.0980] 0.636]  0.02] 0.0260] _ 30.00] 0.0053] 20.289

matrices.

3. Ambient vibration simulation: The white noise is applied mutually on 8 node point of the model bridge (Fig. 1)

other than the support point, and corresponding velocity response was recorded. The acceleration of white noise was
shown in Fig. 2. Table-1 and Table-2 indicates the model bridge properties and the natural frequency respectively. For
dynamic analysis modal damping was assumed as 0.02.

4. Discussion on simulation result: 3000 ambient vibration data were used to estimate dynamic characteristics for each

time and the process was repeated for 100 times. Fig. 4 is the graphical representation of the estimated frequency which
shows the frequencies up to 8" mode order can be estimated automatically. Estimated damping by each method has
shown in Fig. 5. The estimation accuracy of frequency and damping were evaluated in Table-3. The estimation error for
the frequency as well as damping for lower order vibration is a little bit higher than upper mode order. The coefficient of
variation for damping within 50%, which indicates also, a good accuracy as the value of damping is too small. Result of
natural vibration mode and estimated vibration mode has been shown together in Fig. 3 and the estimated vibration mode
has excellent similarity to the natural vibration mode.

5. Conclusion: From this study, it has been understood that each method can effectively estimate frequency, damping,
and vibration mode. Reasonable estimation error for both methods was observed. So the balanced probabilistic
realization theory based on the ambient vibration measurement can be used structural identification.
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