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1. Introduction 

Extensive research has been carried out to understand the ductility and ultimate strength of short cylinders after the 

occurrence of substantial damage of the steel bridges due to the Hyogo-ken Nanbu earthquake. Ultimate strain formulae 

have been proposed [1] for steel cylinders subjected to combined compression and bending. In these formulae axial force 

is assumed to be constant. However, during earthquakes fluctuation of the axial force together with the bending moment is 

significant in portal frame bridge piers and arches subjected to in-plane excitation.  

The influence of the axial force fluctuation on the ductility of short steel cylinders is studied in this research through 

the numerical analyses of parametric models. Based on the results ultimate strain formulae accounting for the influence of 

axial force fluctuation is proposed. 

Table 1: Analyzed Models 

MODEL D  
(mm)

t   
(mm) 

2. Parametric Models 
L  

(mm) D/t Rt L/D

1 1062 20 

The structural parameters of the short cylinder models used in the 

numerical analysis are listed in Table 1.The radius–thickness ratio 

parameter (Rt) is set as the main parameter. The length of the 

cylinders (L) is set to the critical length that gives a minimum 

ultimate strength in compression. A typical finite element mesh 

shown in Figure 1 is employed to analyze the cylinders by using the 

general purpose finite element analysis software “Marc”. Only upper 

half of a cylinder is modeled because of the symmetry and a simple 

supported boundary condition is assumed. To impose bending, the 

upper segment is constrained as a rigid plane. The cylinders are made 

of mild steel (SS400). Initial imperfections, i.e. the residual stresses 

and the initial geometrical deflection, are taken into account.  

173.6 53.1 0.050 0.164
2 1328 20 199.2 66.4 0.063 0.150
3 1988 20 252.6 99.4 0.094 0.127
4 2656 20 292.2 132.8 0.125 0.110
5 3980 20 350.2 199.0 0.188 0.088
6 5308 20 398.0 265.4 0.250 0.075
7 6636 20 411.4 331.8 0.313 0.065
8 7962 20 420.0 398.1 0.375 0.053
9 10616 20 407.0 530.8 0.500 0.038

3. Methodology  

Fluctuation of the axial force is simulated by applying an 

eccentric displacement load (Pδ) that results in linear axial force 
and bending moment increments at upper segment center of the 

cylinder, as shown in Figure 2. A load (Pi) that accounts for the 

initial value of the axial force fluctuation is applied to the upper 

segment center node and the desired final axial force (Pf) is 

achieved by adjusting the eccentricity (e). The results are compared with the constant axial force case, in which the final 

axial force of the fluctuating axial force case is applied to the center node as a fixed value. Axial force fluctuation amount 

(α=Pf/Pi) is set as a variable parameter and three cases of α values (3, 2 and 1.5) are studied respectively for three different 

final axial force levels of 0.6Py, 0.4Py and 0.2Py (Py=Squash load). 

Figure 1: Finite Element Model 
Pi 

e 
Pδ

Figure 2: Loading method for axial force 
fluctuation 

4. Influence of Axial force fluctuation  

Comparison of the bending behavior of the constant and fluctuating axial force cases revealed that the ductility 
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capacity is improved in the post-peak region when axial force fluctuation is considered. As an example Figure 3 is 

provided where the moment-rotation relationship of the constant and fluctuating axial force cases are compared for an 

axial force fluctuation pattern. It can be seen that improvement in the ductility becomes more significant in the further 

post-peak region. In Figure 4 ultimate strains of the fluctuating and constant axial force cases are compared when limit 

state is set as the strain level corresponding to the 95% of the maximum moment after the peak (M95 limit state). It can be 

seen that the improvement is valid for all models and the ratio of the ultimate strain follows a path that can be 

approximated with the curves shown in the figure (The higher results between Rt=0.06 and 0.1 are neglected)  

5. Ultimate strain formulae 

In order to consider the influence of axial force fluctuation in the 

estimation of ultimate strain, we propose correction functions to modify the 

existing constant axial case formula [1]. Correction functions (1-3) are 

developed based on the approximation curves in Figure 4. In addition, 

functions are developed for the further post-peak ductility corresponding to 

the 90% and 80% of the maximum moment after the peak. (M90, M80)  
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Since there is constant axial force case formula only for the M95 limit 

state (equation 4), equation 5 and 6 are proposed for M90 and M80. 
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Ultimate strain for a desired limit state can be estimated by multiplying 

the result of the constant axial force case formulae with the one of the 

correction function within the application range (Pf ≤ 0.6, 1.25 ≤ α ≤4 and 

0.03 ≤ Rt ≤ 0.5). Conservative estimates can be obtained in this range with an 
error of less than 20% in most cases as shown in the comparison of the numerical analyses results in Figure 5. 

6. Conclusions 

The proposed formulae can be used to determine the ductility capacity of pipe section columns in portal frames and 

arch-ribs in arch bridges subjected to bending as well as axial force fluctuations. The formulae will result in the use of 

higher ductility as design values compared with conventional practice, making the seismic design more rational. 
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Figure 3: Bending Behavior (Model 4, 
 Pf=0.6Py, α=3) 
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Figure 4: Comparison of the post peak 
ductility (M95, Pf=0.6Py) 
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Figure 5: Estimation accuracy 
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