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1. Introduction

The most famous solid-fluid interaction has a La-
grangian solid and an Eulerian fluid model, which
usually implies two solvers which interact during
the simulation. The interaction algorithm for above
mentioned computational framework can be however
computational expensive to find the contact domain.
With the present approach, this problem vanishes
since such kind of interaction algorithm is not re-
quired. The interaction or contact simulation is the
concept of an element mixture theory. More than
one material are than handled in an element. Only
an Eulerian mesh is used, so only one solver.
2. Computational Framework

The solution of present fixed-mesh finite element
method1) is splitted here in a Lagrangian step and
an advective step. Later step transports the mate-
rial and corresponding solution variables through the
remapped mesh. Both steps, the Lagrangian and Eu-
lerian are solved at each time step. The flowchart of
a computational step is described in below box. Af-
ter reading and initializing the program data, a loop
is started until the wished end time is reached.

• Lagrangian step
+ calculate element stress

- solid stress
- fluid stress
- average stress

+ calculate internal nodal forces
+ calculate nodal accelerations
+ calculate nodal velocities

- calculate fluid pressure
- update nodal velocities

+ calculate coordinates
• Eulerian or advective step

+ advect solution variables
+ advect nodal velocities

It is worth to mentioned that implemented subrou-
tines integrate the element with a single gauss point,
which simplify the interaction of solution variables
between solid and fluid.

3. Navier-Stokes Equations

The primitives variables of an incompressible vis-
cous fluid dynamic process are mainly given by fol-
lowing the Navier-Stokes equations, namely, the mo-
mentum equation and the incompressibility constrain
equation.

ρv̇ +∇p = µ∇2v + ρb (1)

∇ · v = 0 (2)

where ρ is the fluid density, v is the velocity field, p is
the pressure, µ is the dynamic viscosity and b is the
body acceleration. A way of decoupling velocity and
pressure is the concept of a fractional step method,
which splits the momentum equation in

ρv̇ = ν∇2v + ρg (3)

ρv̇ = −∇p (4)

The concept of the fractional method is carried out
in three steps:

1. the calculation of an intermediate velocity (ne-
glecting pressure effects)

vn+1
∗ = vn +

∆t

ρ

[
ν∇2vn + ρg

]
(5)

2. the calculation of the pressure by considering
the previously calculated intermediate velocity.
Taking the divergence or curl (∇·) of Eq. (4)
and considering the incompressibility constrain
of Eq. (2), the pressure poisson equation is
reached

∇ · vn+1 = ∇ · vn+1
∗ − ∆t

ρ
∇ · ∇p (6)

∇2p =
ρ

∆t

[∇ · vn+1
∗

]
(7)

3. the correction of the velocity by considering pres-
sure effects

vn+1 = vn+1
∗ − ∆t

ρ
∇p (8)
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4. Solid-Fluid Interaction

Mixture theories concept the treatment of more
than one material in an element. The simplest mix-
ture theory, also called the mean strain rate mixture
theory, is favorized because of its simplicity and ro-
bustness 2). Here, we used it for a solid-fluid inter-
action problem. The simplest mixture theory have
the assumption that the strain rate ε̇ is same for all
present materials in an element. So the stress rate
σ̇m of material m is given by

σ̇m = Cm : ε̇ (9)

where Cm is the constitutive tensor of material m.
The updated stress σn+1

m by time n + 1 is then

σn+1
m = σn

m + σ̇m∆t (10)

The element mean stress σn+1 is then

σn+1 =
nmat∑

m=1

σn+1
m fm (11)

where nmat is the number of materials present in
the element and fm is the element density function
of each material m.
5. Computational Results

In following calculation, an elastic ring falls free
onto a fluid. For simulating a certain impact velocity
when the free-falling ring reaches the fluid, an initial
velocity of 0.2m/s downwards has been added to the
elastic ring. Material properties are shown in Table 1.

Table1 Material data: ring-fluid

ring
Density [kg/m3] 500
Young modulus [MPa] 0.05
Poisson’s ratio [-] 0.30
fluid
Density [kg/m3] 1000
Dyn. viscosity [N.s/m2] 0.001

Fig. 1 shows the computational model, 100×66 el-
ements. While the lower part of the ring is supported
by the fluid at impact, the upper part bears a down-
ward forcing due to gravity, 9.81m/s. The result of
this force combination forms an oval shape. Thanks
the elasticity of the ring it tries to recover its initial
shape as shown in the simulation plots in Fig. 2.
Xiao and Yabe 3) published a similar simulation.

Figure1 Ring Falling onto Fluid

Figure2 Computational result of ring falling onto fluid

6. Conclusion

A Solid-fluid interaction test with a flexible or elas-
tic body has been selected rather than a rigid body.
Interaction is well simulated as shown in the ring-
fluid calculation. Buoyancy effects are also well sim-
ulated. In fact, calculations show promising results
regarding the use of simple mixture theory. A com-
plete stress mixture is carried out at each element
rather than an interaction algorithm is used.
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