地下施設への湧水量評価に関する調査システムフローの検討

(財)原子力環境整備促進・資金管理センター 正会員 三好 悟 ,吉村 公孝
(株)大林組 正会員 〇山本 修一,安藤 賢一

1.はじめに

高レベル放射性廃棄物処分事業における精密調査地区選定の法定要件の1つに「地下水の水流があるときは, それらが坑道その他の地下施設に悪影響を及ぼすおそれが少ないと見込まれること」がある¹⁾.この要件に対応 する地質環境調査・評価のプロセスを調査システムフローとして体系化し,事前にその有効性を確認するととも に何が重要な因子となり得るのかを明らかにしておくことは重要である.そこで,既に構築している調査システ ムフロー^{2),3)}に「地下施設への湧水量評価」のフローを加え,そのフローに従って既存の地質調査データ(日本 原子力研究開発機構 幌延深地層研究センター(以下,JAEA)のデータ)を用いてニアフィールドの地下水流動モデ ルを構築し,立坑掘削に伴う水圧低下,ガス発生などを考慮した湧水量評価(**模擬検討**)を行った.その際に溶 存ガスや岩盤の不飽和特性が湧水量に及ぼす影響についても検討した.

2.模擬検討の手順,前提条件

湧水量評価の模擬検討の手順と前提条件を以下に記す.

(1) 湧水量評価の調査システムフローの構築

地下施設への湧水量の評価は,基本的には既に構築している性能評価に関わる 「地下水流動の評価」²⁾の拡張により可能である.湧水量の評価においては掘削 に伴う不飽和領域の進展を考慮する必要があることから,岩盤の不飽和特性評価 のプロセスを「地下水流動の評価」のフローに追加することで湧水量評価のフロー を構築した.

(2) 水理地質構造モデルの構築

JAEA では, 広範な地質調査に基づいて, 地質構造モデルの構築と水理特性の評価が既になされている^{4),5)}.そこで,本検討ではその調査データと評価プロセスを調査システムフローと対応させながらトレースすることによってフローの妥当性の確認と水理地質構造モデルの構築を行った⁶⁾.

(3) 地下水流動解析と湧水量評価

本研究の対象地区においてはメタンを主体とするガスが地下水に溶存し ており⁴⁾,立坑掘削による間隙圧力低下により地下水からメタンがガス化 して湧水量に影響を及ぼす可能性がある.そこで,汎用二相流解析コード Tough2 を拡張した TMVOC⁷⁾により溶存ガスの影響を考慮した立坑掘削時の 地下水流動解析を行った.まず,単純な軸対称モデルによって岩盤の不飽 和特性および溶存ガスが湧水量に及ぼす影響について検討を行い,続いて 断層を含む三次元モデルによる湧水量評価を行った 図1に軸対称モデル, 図2に3次元モデルのメッシュと各層に設定した透水係数 k を示す(3次 元モデルでは稚内層の深度依存性を考慮し、軸対称解析では平均的な値を¹⁰⁰ 採用した)また,仮定した不飽和特性を図3に、境界条件等を表1に示す.

岩盤の不飽和特性の影響を調べるために図3に示すように毛管圧力が高 いケースおよび相対透過係数が大きく変化するケースを設定した.また, 溶存ガスの影響を調べるために以下の(a),(b)2種類の解析を行った.

(a) 飽和不飽和浸透流解析:液相のみの流れを扱う

(b)水,空気,メタンの多成分二相流解析:液相と気相流れ,気相の液相への溶解,ガス化,多成分の拡散を扱う.地下水は溶存メタンガスで飽和

図 2 3D モデル

キーワード 湧水量,二相流解析,調査システムフロー,不飽和特性,高レベル放射性廃棄物処分 連絡先 〒108-8502 東京都港区港南2-15-2品川インターシティB棟 (株)大林組土木技術本部 Tel.03-5769-1309

していると仮定.

なお,立坑は東,西,換気の3本が計画されているが,軸 対称モデルでは東立坑(内径6.5m,深さ500m)を,三次元モ デルでは東立坑と換気立坑(内径4.5m,深さ500m)を対象と した(同時掘削).また,掘削速度は25m/月を仮定した.

3.地下水流動解析と湧水量評価結果

(1)軸対称解析結果

図4は溶存ガスの取り扱いの違いによる湧水量の経時変化 の違いを示している.両者に大きな違いが見られないことか ら本サイトの場合は気相の移流や溶存メタンガスの湧水量へ の影響は小さいと言える.図5は岩盤の不飽和特性を変えた 場合の結果を示している.1オーダー大きい毛管圧力で2~ 3倍の湧水量となり,不飽和により急激に透過係数が変化す るケースで1/5程度の湧水量となっている(図4との比較).20 岩盤の不飽和特性の影響が小さくないこと,従って,信頼性 の高い不飽和特性の調査・評価が重要であると思われる. (2)3次元解析結果

気相の移流や溶存ガスの影響が少ないことから,3次元解 析では飽和不飽和浸透流解析により東立坑と換気立坑の湧水

量を評価した(図6,図7).約350日後以降湧水量が急増するが,これは 立坑が声問層(k=9.07×10⁻⁹m/s)から透水係数の高い稚内層(深度 z 依存 の透水係数⁵⁾:Log₁₀k=-0.0105z-3.9118,例えば東立坑位置での稚内層最上 部要素は z=275m, k=1.6×10⁻⁷m/s)に到達したためである.また,径の小 さい換気立坑の方がむしろ湧水量が多い結果となっていることから,両立 坑の3次元的な局所水理場の違いの影響が示唆される.

4.まとめ

本模擬検討から, 湧水量評価においては岩盤の透水係数のみならずその不

飽和特性も重要であること,また,当該地点のような複雑な水理地質場の場合には詳細な3次元解析の必要性が示唆された.また,模擬検討を通して,堆積岩における湧水量評価に係わる調査システムフローの妥当性が確認された.なお,得られた成果は事例や重要知見としてITベースの調査システムフロー³⁾に蓄積し簡単に参照,活用できるよう整備している.本報告は,経済産業省からの委託による「地層処分技術調査等」の成果の一部である.また、地質調査データに関する情報をご提供いただいた JAEA の関係諸氏に感謝の意を表します. 参考文献

1) 特定放射性廃棄物の最終処分に関する法律資料,平成十二年六月七日,法律第百十七号,通商産業省 2)(財)原環センター:平成 13 年度地層処分経済性向上調査地層処分サイト評価技術確証試験報告書,2002. 3) K.Yoshimura et al.: DEVELOPMENT OF A WEB-BASED SITE INVESTIGATION FLOW DIAGRAM FOR HLW REPOSITORY DEVELOPMENT, 10th IHLRWM Conf.,2006. 4)核燃料サイクル開発機構:高レベル放射性廃棄物の処分技術に関する知識基盤の構築,JNC TN1400,2005. 5)操上ほか:幌延深地層研究計画における地下水流動解析,JNC TN5400 2005. 6)(財)原環センター:平成 17 年度地層処分技術調査等地質環境評価技術高度化調査報告書,2006. 7)K. Pruess et al.: TMVOC, A Numerical Simulator for Three-Phase Nonisothermal Flow of Multicomponent Hydrocarbon Mictures in Saturated-Unsaturated Heterogeneous Media, Lawrence Berkeley Laboratory Report LBNL-431134,2002

図7 500m 掘削時のガス飽和度