合成フーチングの力学性状に関する解析的研究

(株)錢 高 組	正会員	○田 福胜
(株)錢 高 組	正会員	原田尚幸
松尾橋梁(株)	正会員	大畑和夫
(独)土木研究所	正会員	竹口昌弘

1. はじめに

これまで著者らは、鋼・コンクリートサンドイッチ 構造の合成フーチングに関する実験的研究を行ってき た^{1,2)}.しかし、合成フーチング内部の鋼板やコンク リートの挙動などをより詳しく把握するためには、3 次元非線形 FEM 解析などによる検討が不可欠であると 考えられる.そこで、既往の実験結果^{1,2)}に対し、3 次元非線形解析を行い、合成フーチング内部の応力状 態などを明らかにした.

2. 解析概要

解析対象はせん断補強鋼板の配置をパラメーターと した F-1、F-2 の 2 体の試験体である. 試験体寸法を図 -1 に示す. 材料の力学特性値などを表-1 に示す.

2. 1 解析モデル

解析モデルを図-2に示す.対称性により,解析に は1/2モデルを用いた.コンクリートはソリッド要素,

鋼板はシェル要素を用いた.フーチング上面から 500mm 以上の橋脚柱は 梁要素を用いた.鋼板とコンクリートの接触面での剥離,滑りの現象を 界面要素により表現する.

2.2 材料の構成則と特性

コンクリートは Drucker-Prager の降伏条件を適用し, 圧縮側および 引張側のコンクリートに非線形特性を考慮した応力--ひずみ軟化曲線を 用いた.また, コンクリートのひび割れ挙動は分布ひび割れモデルで模 擬した.

鋼板の降伏条件はVon Mises 降伏条件を,非線形特性は引張試験から 得られた応力--ひずみ関係を用いた.

3. 解析結果と実験結果の比較

解析および実験による水平荷重の作用位置における荷重-変位曲線を 図-3に示す。フーチング上下面鋼板の初降伏は載荷方向のひずみが 1700μ(材料試験値)に達した時とする.図から分かるように,初期剛 性,上下面鋼板の初降伏荷重とも,解析結果は実験結果をよく評価して

いる.しかし、荷重の増大に伴って、解析結果は実験結果を過大評価している傾向が見られる.解析結果を調べることにより、解析終了時点で橋脚柱前面におけるフーチング圧縮域のコンクリートの最小主ひずみが17000 µ に達して

キーワード:合成フーチング,3次元非線形 FEM 解析,最大主ひずみ,最小主ひずみ 連絡先:〒163-1011 東京都新宿区西新宿 3-7-1 新宿パークタワー24F TEL03-5323-3861 FAX03-5323-3860

試験 体名	s/d	a/d	t ₁ (mm)	t ₂ (mm)	f _{sy} (MPa)	E _s (MPa)	f _c ' (MPa)	E _c (MPa)
F-1	1.0	15	29	29	250	214000	32.9	18640
F-2	2.0	1.0	3. 2	3. 2	550	214000	29.0	17110
注, , , , , , ,) 転場路御店問題, , , , , , , , , , , , , , , , , , ,								

表-1 試験体一覧

: s: せん断補強鋼板間隔; d: 合成フーチング断面高さ
t₁、t₂: それぞれ上下面鋼板、せん断補強鋼板の板厚;

a:橋脚前面から杭位置までの距離(せん断スパン)

試験体名	F-1			F-2		
比較項目	①解析值	②実験値	1)/2)	①解析値	②実験値	1/2
上面鋼板初降伏荷重(kN)	410.6	504.1	0.81	412.4	399.2	1.03
下面鋼板初降伏荷重(kN)	604.2	702.4	0.86	568.2	580.0	0.98
最大荷重(kN)	1267.0	1144.4	1.11	1152.9	1064.9	1.08

表-2 解析結果と実験結果の比較

いることが分かった、鋼板の降伏領域の拡大に伴い、圧縮域のコンク リートが過大な圧縮ひずみに到達したことにより、フーチングの耐力 が低下し始め、この時点で解析が終了したと考えられる. 解析結果と 実験結果との比較を表-2に示す.表-2から、耐力につい 30000

ては、解析結果は実験結果をよく評価していることが分かる. また,解析終了時点での,F-1 試験体の上面鋼板の橋脚柱前 面断面における載荷方向ひずみ分布を図-4に示す.図から、 解析による降伏幅は実験による降伏幅とほぼ同じであること が分かった.

最大荷重時のコンクリート最大主ひずみベクトルを図-5 (a)に示す、図から、フーチング内のコンクリートの応力伝 達が図-5(b)に示すトラス機構の圧縮斜材であると判断で きる. これは実験結果を分析した結果とよく一致している²⁾.

4. まとめ

3次元非線形 FEM 解析により、合成フーチングの 実験結果を概ね評価することができた.また、合成 フーチング内部のコンクリートの応力伝達がトラス 機構の圧縮斜材であることが明らかになった. 今後 は最大荷重時以降の挙動について検討を続けていき たいと考えている.

なお、本検討は「交差点立体化の路上工事短縮技 術の開発」に関する共同研究(土木研究所、錢高組、 松尾橋梁)で実施したものである。

【参考文献】

1) 田福胜,福井次郎,竹口昌弘,大畑和夫:合成フー チングの曲げに対する有効幅に関する実験的研究, CS2-038 土木学会 第60回年次学術講演会, 平 成17年9月.

2) 田福胜, 原田尚幸, 大畑和夫, 竹口昌弘: 正負交番繰り返し荷重を受ける合成フーチングの力学性状に関する実験的研究, 構 造工学論文集, Vol.52A, 2006.3

載荷方向ひずみ