並列配置された孔あき鋼板ジベルのせん断耐力

広島大学大学院	学生会員	○日向優裕	広島大学大学院	正会員	藤井堅
石川島播磨重工業㈱	正会員	岩崎初美	西日本旅客鉄道㈱	正会員	深田和宏

1. 目的

少数主桁橋梁は、従来施工されている多主桁橋梁に比 べ, 鋼桁と床版の間に発生するせん断力が大きく, 従来 使用されている頭つきスタッドでは界面のせん断力を十 分伝達できない場合がある.このような場合,頭付きス タッドの代わりに孔あき鋼板ジベル (PBL) が使用され つつあり、並列に配置されることが多いようである.し かし、孔あき鋼板ジベルを並列に配置した場合の終局ず れ挙動や崩壊性状は、十分には解明されていない. そこ で本研究では、 孔あき鋼板ジベルを並列に配置した場合 のせん断耐力試験を行い,終局ずれ挙動を明らかにする.

2. 載荷実験

Fig.1 に示す供試体を用いて押し抜きせん断試験を行 った.供試体は、鋼板の両側面にジベルプレートを溶接 した鋼材にコンクリートを打設して作成している.ジベ ルプレートと鋼板の下には発泡スチロールを配置し、ジ ベル端の支圧抵抗を取り除いている.また、ジベル孔内 以外の全ての鋼表面に剥離剤を塗って、コンクリートと 鋼材の付着を除去した.

各供試体のパラメータを Table 1 に示す. 孔内貫通鉄 筋、コンクリートかぶり厚(B)、PBLの配置間隔と鋼板 高さの比(L/H)の影響を調べる. Photo.1 に実験の状況 を示す.実験は 500tf 耐圧試験機を使用し,載荷速度 0.05tf/sの荷重制御で行った.供試体底面には不陸を調節 するために石膏を敷いている.本実験に使用したコンク リートの材料特性を Table 2 に示す. なお,供試体 S.D-B100-L300-H100-R.1-13 に用いたコンクリートはコ ンクリートA, それ以外の供試体ではコンクリートBで 実験結果と考察 ある.

Photo.1 載荷状況

Fig.1 供試体形状 (S.D-B100-L300-H100)

Table.1 供試体パラメータ

供試体名	貫通鉄筋	コンクリート	PBL配置間隔	PBL鋼板高さ
	(D13)	かぶり厚B (mm)	L (mm)	H (mm)
S.D- B100-L300-H100	無	100	300	100
S.D- B100-L300-H100-R.1-13	有	100	300	100
S.D-B50-L300-H100	無	50	300	100
S.D-B200-L300-H100	無	200	300	100
S.D-B100-L300-H150	無	100	300	150
S.S-B100-H100	無	100	_	100

※S.D:並列配置供試体 S.S 单列配置供試体

※PBL:板厚12mm,孔径60mm

Table 2 コンクリート材料特性

	圧縮試験結果			引張り試験結果
	弾性係数	ポアソン比	圧縮強度	引張り強度
	(MPa)		(MPa)	(MPa)
コンクリートA	25506	0.20	34.55	2.84
コンクリートB	24500	0.20	28.92	2.20

1) せん断耐力

Table 3 に実験結果, Fig.2 にせん断耐力 - ずれ関係を 示す. Fig.2 より, ジベル孔内に貫通鉄筋を配置すると最 高荷重を過ぎてからの耐力低下が小さくなることがわか る. また, 背面コンクリートのかぶり厚が大きくなるほ どせん断耐力が大きくなることがわかる.一方、PBL 鋼 板高さが 100mmと 150mmの供試体では、せん断耐力 は同程度であった.以上のことより、せん断耐力は、孔 内貫通鉄筋や背面コンクリートのかぶり厚の影響を受け るが、PBL 鋼板高さの影響はないことがわかる.

キーワード 孔あき鋼板ジベル 並列配置 せん断耐力 配置間隔

連絡先 〒739-8527 広島県東広島市鏡山 1-4-1 広島大学大学院工学研究科社会環境システム専攻 TEL 082-424-7792

2)崩壊性状

Photo.2 にひび割れの様子を示す. 並列配置した供試 体も単列配置した場合と同様、ジベル先端から供試体背 面へ向うひび割れにより崩壊に至った. 単列配置した場 合,ジベル孔内のコンクリートは2面せん断破壊を起こ し、ずれが進行する過程で周辺コンクリートを押し広げ ようとする力(押し広げ力)が発生することがわかって いる. 並列配置した場合もジベル孔内のコンクリートは 2面せん断破壊を起こしており、単列配置した場合と同 様、ジベル孔部に発生する押し広げ力に起因した背面コ ンクリートかぶり部の曲げ変形により崩壊に至ることが わかる

4) せん断耐力の評価式の拡張

Fig.3 に実験値と評価式による推定値の比較を示す.

孔あき鋼板ジベルを単列に配置した場合, 孔1つ当り のせん断耐力 (Qu.c) は、ジベル孔部のコンクリートが2 面せん断破壊を起こすときのせん断耐力(Q_{init})と背面 コンクリートによるジベル孔部を拘束する力 (T_c), 供試 体底面に設置した石膏やモルタルの摩擦による拘束力 (T_f)の総和で与えられると考え,以下の評価式を提案

している.¹⁾

$$Q_{u.c} = Q_{init} + 2.5(T_c + T_f) \iff Q_{u.c} = \frac{Q_{init} + 2.5T_c}{1 - 1.25\mu}$$
(1)

並列に配置した場合について考えると、背面コンクリ ートは Fig.4 のようにモデル化することができる. コン クリートブロック全体で考えると、PBL を並列に配置す ることで、Qinit, T_c, T_f はそれぞれ2倍となることがわ かる.したがって、PBLの必要配置間隔を満足する場合 は、単列配置した場合と比べて2倍のせん断耐力を得る ことができると考える.

ここで、配置間隔について、PBL 鋼板高さの3倍程度 以上にすると単列配置した場合と比べせん断耐力は低下 しないとされている.しかし、せん断耐力は PBL 鋼板高 さの影響をさほど受けないことがわかった.したがって, 必要配置間隔は、PBL の鋼板高さで決まるのではなく、 ジベルの孔径や背面コンクリートかぶり厚など他のパラ メータが支配的であるように思われる.

4. まとめ

PBLを並列に配置した供試体の終局ずれ挙動とその崩 壊メカニズムを調べた. せん断耐力は、単列配置した場 合のせん断耐力の評価式を拡張して評価することができ ると考えられる.並列配置した場合のせん断耐力の評価 参考文献 法や配置間隔について、今後詳細に検討していくつもり 1) 深田和宏: 孔あき鋼板ジベルのずれ耐力に及ぼす種々の拘 である

Photo.2 ひび割れの様子 (S.D-B50-L300-H100)

Table 3	美颖結果		
供試体名	孔1つ当たりの	ずれ	評価式による
	せん断耐力(kN)	(mm)	推定値(kN)
S.D-B100-L300-H100	150.4	1.79	123.8
S.D-B100-L300-H100-R.1-13	205.8	2.56	282.9
S.D-B50-L300-H100	123.0	1.45	55.8
S.D-B200-L300-H100	199.7	2.37	285.8
S.D-B100-L300-H150	144.1	2.10	105.1
S.S-B100-H100	116.6	1.64	123.8

束因子の影響,広島大学大学院修士論文,2005.3.