鉄道軌道を考慮した SEA 法の適用に関する研究

長岡技術科学大学	大学院	č	学	主会員	筒井	貴史
株式会社交通建設					佐藤	千春
長岡技術科学大学	環境・	建設系	εī	E会員	宮木	康幸

1. はじめに

近年,人口の都市への集中が増加し,都市部にお いては鉄道や地下鉄網の整備による輸送力の強化 が図られてきた。鉄道橋を列車が走行する際に発生 する騒音は,特に鋼橋の場合においては,列車によ る振動が軌道を介して床版等に伝わり,その振動が 原因で生じる固体音が卓越する.

この固体音の騒音予測の手法として,中高周波数 域の計算を得意とする統計的エネルギー解析法(以下 SEA法)を用いて解析を行ってきた.SEA法で は,実測値などを用いた入力パワーが必要とされる ため,昨年度までは固体音の音源となる床版の実測 振動加速度値を用いて固体音の予測を行ってきた.

しかし,床版の振動加速度は橋梁のスパン長や構 造形式によって個々の橋梁で大きく異なることが 知られている.一方,レールの振動加速度は個々の 橋梁の相違によらずほぼ一定の周波数スペクトル を有している.また,軌道パット,スラブパットに よる防振構造の相違による固体音の違いを評価す る必要がある.

そこで本研究は、軌道構造の違いによる固体音予 測を目的として, SEA 法に用いる入力パワーを実 測レール振動加速度から算出することにした.

2. SEA 法の概要

SEA 法では振動,音響をエネルギーという統一 量で表す.解析対象である構造物は FEM に比べて 比較的少数な要素(SEA 法ではサブシステム)に 分割され,そのサブシステム内の損失パワー,サブ システム間の伝達パワー,サブシステム外からの入 カパワーの平衡関係から伝達を計算する.結果とし て,ある周波数帯域の振動速度,音圧が求まるもの である.

図 1 に 2 つのサブシステム系のパワーフローを 示す .SEA 法は ,サブシステム内の損失パワー*P*_{1d} , *P*_{2d} , サブシステム間の伝達パワー*P*₁₂ , サブシステ ム外からの入力パワー*P*₁ *P*₂ の平衡関係からエネル

キーワード 騒音予測,固体音,統計的エネルギー解析法

ギーを計算する.多サブシステム系は基本的に 2 サブシステム系の応用で表すことができる.

3.入力位置の概要

図2に入力位置の概略図として橋梁の簡略断面 を示す.昨年度のSEA法を用いた騒音予測の計算 では,入力位置は図2(a)のように床版入力とし解 析が行われた.そこで,本研究では図2(b)のよう に新たに軌道構造を考慮し,入力位置をレールとし て解析を行う.

4. 解析モデル

軌道部はレール,軌道パット,軌道スラブ,スラ ブパットの4サブシステムとした.図3に軌道構造 の概略として軌道構造の断面図を示す.レールは, 現在列車の高速化,重量化に伴い使用頻度の高い 60kgレールを使用する.(a)は防振構造無し,(b)は 防振構造有りのモデルである.

7-197

5. 解析結果

解析では,レールと列車が同時に振動することを 考慮して,列車ばね下重量として約100tを考慮し て入力パワーの計算を行った.

5.1 防振構造の効果

防振構造の有無による計算結果の比較を図 4 に 示す.また,O.A.値の計算結果の比較を表1に示す.

計算結果より,防振構造有りとすることにより,防振構造無しの場合の計算結果と比べ,大きく減衰することがわかる.しかし実測値を大きく下回り,減衰量を過大評価していることになる.表1のO.A. 値を見ると防振構造有りの場合では約40dBの差が生じている.

従来の SEA 法の解析において,軌道パット,ス ラブパットのような減衰材料をサブシステムとし て適用することは課題とされている.今回の計算結 果においても,サブシステムとしての適用は困難で あることがわかった.

この結果から、防振構造をサブシステムとしてで はなく、弱結合として考慮する必要があると考えた. これにより,防振効果をエネルギー損失ではなく, 結合損失率として表すことができる.

		SEA[dB]							
	実測値	軌		林送本市					
	[dB]	サブシ	記姓스	割迫方慮 たⅠ					
		防振構造有り	防振構造なし	33100	~C				
O.A.値	103.2	63.2	106.3	101.5	101.7				

表1 O.A.值比較

図4 音圧レベル:防振構造有無の比較

5.2 防振構造を弱結合とした場合

防振構造をサブシステムとしてではなく,結合 要素とした場合の計算結果を図5に示す.

計算結果より 防振構造の防振効果を結合損失と

して与えることで 昨年度までの鉄道軌道を考慮し ない場合の計算結果と比較し、特に高周波域の音圧 レベルにおいて実測値に近い値が得られた.表1 の O.A.値に関しても,多少の差はあるが,比較的 実測値と近い値を示していることがわかる.

図5 音圧レベル:軌道構造考慮の比較

6. まとめ

今までの SEA プログラムに軌道部のモデルを考 慮することにより,レールの振動加速度を入力する SEA 法の騒音予測が可能となった.このことから 軌道パット,スラブパットの防振材料を考慮した騒 音予測が可能となったと考えられる.なお,SEA 法の入力パワーの計算条件において,列車ばね下重 量を考慮する必要があることが分かった.

また,昨年度の計算結果と比較し,鉄道軌道を考 慮することでより実現象に近い騒音予測プログラ ムが開発できた.

今後の課題として、ゴム材等の高減衰材料の模型 実験などによる SEA パラメータの推定, リブ, フ ランジ,横構などの詳細なモデルでの解析,橋梁支 持条件による振動特性の把握などがあげられる.

参考文献

- 1) 佐藤千春,北城正樹,宮木康幸:騒音伝播を考慮した SEA 法の実橋への適用に関する研究,土木学会第60回年次学 術講演会講演概要集 -187 pp.373-374,2004
- 2) 入江良彦: SEA 法による固体伝播音解析,日本音響学会 誌 48 巻 6 号, pp 433-444,1992
- 3)織田光秋,矢野弘,小池治孝:構造物の振動によって生じる騒音の解析,川崎重工技報137号,pp90-95,1998