継手を有する鋼コンクリートサンドイッチ部材の曲げ挙動

錢 高 組 正会員〇中筋智之 角田晋相 錢 高 組 正会員 原田尚幸 齋藤 優 JFE 建材 正会員 松岡 馨 林 伸郎

1. はじめに

アンダーパスの急速施工技術である Lacross (Large composite segment crossing passage) 工法¹⁾ は、1つのエ レメント寸法を大きくすることで継手数を減少し、外殻先行トンネル工法の施工性改善を図ったものである。 しかし、本工法の継手部は、従来工法の継手部とは異なるため、その構造性能および設計法について明らかに する必要がある。そこで、継手部の構造をパラメータとしたサンドイッチ部材の載荷実験を行い、継手の有る 鋼殻で構成されたサンドイッチ部材の曲げ特性について検討した。

2. 実験概要

実験概要を図-1 に示す。試験体は、試設計で得られた断面の 3/8 の大きさに縮小した。鋼板の材質は SM490、 板厚は 6mm とし、コンクリートは早強セメントを用いた圧縮強度 30、50N/mm²のレディミクストコンクリー ト(S.L=18cm)とした。載荷は、等曲げ区間 600mm、せん断区間 1050mm(せん断スパン比 3.5)の2 点載荷 である。なお、鋼殻継手の噛込み状態での引張強度は、母材の降伏強度以上であることを確認している¹⁾。

継手部は鋼殻継手と長ボルトで構成されているが、 鋼殻継手にはガイド機能のみを期待し、耐力は接合材 で確保するものとした。ここでは、継手部の構造細目 を決定するため表-1に示す6ケースの実験を実施した。 継手部の構造を表-2に示す。鋼殻継手は図-2に示す(a) 突合せ状態と(b)噛込み状態の2通りとし、接合材は高 カボルト F10.9 と PC 鋼棒 SBPR1080/1230 を用いた。 また、補強リブを表中ハッチング部に設置した。

試験体 No.	コンクリー ト強度 (N/mm ²)	継手有無	継手状態	接合材		補強リブ 有無	
1	30	なし	1	1	1	なし	
2		あり	突合せ	-	1		
3				高カボルト	-	あり	
4	50	あり	突合せ	PC鋼棒	緊張なし	あり	
5			噛込み				
6					緊張あり		

表-1 実験ケース

表-2 継手部の構造

keywordsアンダーパス,急速施工,鋼コンクリートサンドイッチ,継手,曲げ特性連絡先〒163-1024東京都新宿区西新宿 3-7-1新宿パークタワー24FTEL:03-5323-3861FAX:03-5323-3860

3. 実験結果および考察

代表的なたわみ分布を図-3 に示す。鋼殻継手が(a)突合せ状態の場合、継手金物は荷重の増加とともにコンクリート部から抜け出し大きなたわみを示した。一方、(b)噛込み状態においても継手金物の抜け出し現象は見られたが、その挙動は本体部(case1)とほぼ同様であった。また、継手金物の抜け出しは、PC 鋼棒に緊張力を導入する(case6)ことでほぼ抑えられることを確認した。

荷重と支間中央のたわみ関係を図-4 に示す。いずれの場合 とも付着切れまでのたわみの実験値は、試験体の全断面を有 効とした計算値と一致した。部材の初降伏は、純曲げ区間の 下面鋼板において全区間ほぼ同時に達していた。最大耐力は 継手金物の破壊(H型金物降伏後、C型金物が開き噛合せが 外れること)により決定される結果となった。このため突合 せ状態にある鋼殻継手のみ(case2)では、耐力をほとんど期待 できないことがわかった。また、いずれの場合も接合材は最 大荷重時において降伏に達していない。

各試験体の耐力を RC 方式(限界状態設計法)によって計算した結果を表-3、図-5に示す。計算値の算出にあたっては、 鋼材を断面積が等価な鉄筋に置換した。いずれの場合も初降 伏時、最大荷重時の実験値は、計算値とよく一致していると 考えられる。

4. まとめ

これらの結果から、本継手構造の耐荷力の設計法としては、 RC 方式(限界状態設計法)が適していると考えられる。

衣	-3	限界状態設計法	による計昇値との比較

	使用限界状態			終局限界状態		
	①実験値	②計算値	1/2	①実験値	②計算値	1/2
Case-1	251.1	175.5	1.43	379.7	366.6	1.04
Case-2	—	175.5	1	108.4	366.6	0.30
Case-3	257.3	250.6	1.03	364.4	341.4	1.07
Case-4	279.1	208.3	1.34	318.5	324.5	0.98
Case-5	271.7	208.3	1.30	375.4	324.5	1.16
Case-6	270.1	208.3	1.30	393.6	324.5	1.21

参考文献 原田・齋藤・角田・中筋・林・松岡:大断面矩形推進機を用いたアンダーパス工法の施工概要と特徴、土木学会第61回年 次学術講演会、2006.9