デジタル画像相関法を用いた非接触全視野計測によるコンクリートの材料試験

長崎大学大学院	学生会員	○浦田	美生	長崎大学	正会員	松田	浩
長崎大学大学院	学生会員	浜岡	広	長崎大学	非会員	山下	務
長崎大学大学院	学生会員	大原	智裕	佐賀大学	正会員	伊藤	幸広
			福岡工業排	支術ヤンター	非会員	内野	正和

1. はじめに

硬化コンクリートの力学的性質に関する試験方法と して通常,圧縮強度試験,引張強度試験,曲げ強度試 験が行われる.一方,硬化過程において問題となる温 度ひび割れや収縮ひび割れ発生に関しては,温度応力 や硬化収縮ひずみを計測する必要がある.これらの試 験におけるひずみ計測には,一般的に埋め込みひずみ ゲージが用いられるが,この方法ではひび割れ発生位 置や局部的なひずみ集中を特定することは困難である.

本研究では、コンクリートの材料強度試験及び硬化 収縮ひずみ計測の際、デジタル画像相関法による非接 触全視野変位計測を行い、それを基に得られたひずみ 分布を用いてひび割れの発生・進展の可視化を行った.

2. 割裂引張試験

(1) 試験概要

試験体は直径 100mm,高さ 200mm の円柱試験体を用⁸⁰ いた.試験方法を図-1に示す.試験体製作には普通ポ ⁸⁰ ルトランドセメントを使用し,水セメント比を 50%と²⁰ した.その配合表を表-1に示す.試験中は図-1に示²⁰ すように,試験体の表側をデジタル画像相関法により⁹ 計測した.また,裏側中央にひずみゲージ(ゲージ部寸 法 60mm)を貼り,ひずみ計測を行った.試験後,それ ぞれのひずみ値の比較を行った.さらに,デジタル画 像相関法により得られたひずみ分布を用いてひび割れ の発生・進展の可視化を行った.

キーワード 非接触, 全視野, ひずみ計測, 硬化収縮, コンクリート材料試験 連絡先 〒852-8521 長崎県長崎市文教町1番14号 TEL&FAX:095-819-2590

(2) 試験結果

割裂引張試験において,ひずみゲージ法,デジタル 画像相関法基準長(60mm)により得られた荷重ひずみ曲 線を図-2に示す.左図はひずみゲージ法とデジタル画 像相関法の比較であり,右図はデジタル画像相関法に おいて基準長を5~60mmと変化させた場合の結果であ る.デジタル画像相関法とひずみゲージ法によるひず み値はよく一致している.また,右図に示すように, 基準長が短くなるほどひずみは大きな値を示している ので,デジタル画像相関法はひび割れ部近傍の局所的 なひずみ計測にも有効となり得るものと考えられる.

図-3は、図-2の①~④の荷重段階でのx方向のひ ずみ分布を示したものである.各荷重段階におけるひ ずみ分布の推移を全視野計測することができ、ひび割 れの発生・進展を可視化することができる.

3. 圧縮強度試験

(1) 試驗概要

試験体は直径 50mm, 高さ 100mm の円柱試験体を用 いた. 試験体製作には普通ポルトランドセメントを使 用し, セメント:水:細骨材の重量比を1:0.5:2とし た. 試験中は試験体の半面をデジタル画像相関法で計 測した. 試験後, それに基づきえられたひずみ分布を 用いて、ひび割れの発生・進展の可視化を行った.

(2) 試験結果

図-4 に載荷開始から破壊までの最大主ひずみ分布 および試験体画像を示す. デジタル画像相関法計測に より得られたひずみ分布からひずみの集中とひび割れ 発生箇所が一致していることがわかる.よって、デジ タル画像相関法によりひび割れの発生・進展を確認す ることができた.また、ひび割れが発生する以前にひ ずみの集中が見られ,ひび割れ発生箇所の予測も可能 であると考えられる.

図-4 最大主ひずみ分布および試験体画像

4. 硬化収縮試験

(1) 試験概要

試験体の種類は2種類とし、モルタル試験体用の型 枠を使用した. それぞれの型枠及び呼び名を図-5 に示 す. 早期に大きな硬化収縮量を発生させるために, 試 験体製作には超早強セメントを使用し,養生は湿潤養 生を行わず,湿気の少ない部屋で行った.水セメント 比 50%、室温は常時 20℃とした.

試験中は、試験体表面をデジタル画像相関法により ひずみ計測を行なった.また、内部ひずみと表面ひず みの関係を把握するために、試験体A、Bには埋め込み ゲージを配置した.

図-5 試験体型枠及び試験体呼び名

(2) 試験結果

セメントペースト硬化収縮ひずみ計測試験において, 試験体 A のそれぞれの計測法により得られたひずみ値

の比較を行った結果を図-6示す.試験開始後、内部ひ ずみは圧縮応力,表面ひずみは引張応力となっている. これは内部と表面の温度ひずみの差によるものと考え られる. 最終的には表面ひずみが内部ひずみに比べ大 きくなっている.これはセメントペースト中の水分が 表面から出入りするため,また表面に外部拘束がない ため、ひずみが大きくなったと考えられる.

試験体 B における試験体表面の x 方向ひずみ分布を 図-7に示す.約24時間後からひび割れ部付近にひず みの集中が始まり、48時間後には完全にひび割れを可 視化できている.

以上より, デジタル画像相関法により硬化収縮過程 の全視野計測が可能であり,ひび割れ発生箇所の予測 や可視化ができると考えられる.

5. まとめ

- 1. デジタル画像相関法により得られる変位分布から, ひずみゲージと同精度でひずみ分布を算定するこ とができる.
- 2. ひずみ分布を観察することで、ひび割れ発生箇所が 予測でき、ひび割れの発生・進展を可視化すること ができた.
- 3. デジタル画像相関法とひずみゲージのひずみ値と の比較を行った結果,ほぼ一致しており,デジタル 画像相関法のコンクリートへの適用性を確認でき た.また、ひび割れ近傍のひずみ値を取得すること ができた.
- 4. デジタル画像相関法を用いることにより,非接触で のセメントペーストの硬化収縮過程におけるひび 割れ発生原因の追求や、内部ひずみと表面ひずみの 関係の明確化が可能であることを確認できた.

参考文献

 ・篭橋忍,伊藤佑樹,堀部謙,森本博昭:コンクリー トの乾燥収縮によるひずみと応力解析、コンクリー ト工学年次論文集, Vol.24, No.1, pp.441-446, 2002