一軸圧縮を受ける高強度 RC 柱の圧縮軟化挙動に及ぼす部材寸法の影響

東北大学大学院	学生員(○阿部諭史	Ţ	東北大学大学院	正会員	秋山チ	七良
東北大学大学院	フェロー	鈴木基行	Ţ	東北大学大学院	学生員	三浦	稔
西松建設(株)	正会員	渡邉正俊	Ē	前田製管(株)	正会員	前田正	包達

1. はじめに

著者らは、広範囲な材料強度の組合せからなる RC 柱に適用可能なコンファインドコンクリートの平均化応 カーひずみ関係を提案した¹⁾.提案モデルは圧縮破壊エネルギー $G_{f,c}$ ¹⁾により軟化勾配を規定したことで、圧縮 変位の測定区間長さが異なる実験結果の再現も可能である.しかし、参考文献 1)で参照した実験供試体の寸法 (柱長さ、断面寸法)とは異なる小型や大型 RC 柱への適用性の検証は今後の課題とされていた.本稿では、有 効横拘束圧 p_e ¹⁾をコンファインド効果の指標とし、供試体寸法が圧縮軟化挙動に及ぼす影響を考察する.さら に、参考文献 1)で著者らが提案したモデルを小型・大型 RC 柱にも適用し、その有用性を検証した.

2. 実験概要

供試体諸元の一覧を**表**-1 に示す.実験因子は, コンクリート圧縮強度 σ'_{c} , 柱長さおよび断面寸法で ある. 横拘束筋降伏強度 $f_{s,y} \approx 1400$ N/mm², 横拘束筋 体積比 ρ_{c} はほぼ同程度の値とした.

3. 有効横拘束圧と圧縮破壊エネルギー

横拘束筋からコアコンクリートに与えられる有効 横拘束圧 p_eの算定式を式(1)に示す¹⁾.

$$p_e = k_{e,v} \rho_w f_{s,c} \tag{1}$$

ここに、*ρ*_wは横拘束筋面積比、*f*_{sc}は圧縮強度発現時の 横拘束筋に生じる応力、および *k*_{ev} は、横拘束筋によ る横拘束圧の変化を考慮する修正横拘束係数である.

提案モデルでは、構成材料の強度および有効横拘束 $E p_e$ が同じ場合、図-1で示される応力-変位曲線下 の面積 $G_{f,c}$ (圧縮破壊エネルギー)および $G_{f,c}$ を吸収す る破壊領域長さ L_p は柱長さおよび断面寸法に関わら ず一定であり、応力-塑性変位 δ_{inel} 関係は一致すると 仮定している.しかし、断面寸法の異なる供試体に関 しては、参考文献 2)で報告したように、局所ひずみ分 布、すなわち、 L_p が異なる結果となった.柱長さおよ び断面寸法の異なる供試体の応力-塑性変位関係を それぞれ図-2 および図-3 に示した.これらより、 局所ひずみ分布は断面寸法により異なっても、それを 表-1 供試体諸元の一覧(全 25 体)

供試体寸法 ^{注)} (mm)	$\sigma_c'(\text{N/mm}^2)$	$\rho_s(\%)$	拘束形状	
200×200×600	43.9~120			
250×250×750	45.8~119			
250×250×1500	45.8~119	約1.5		
350×350×1050	43.9~66.5			
450×450×1500	43.9~120			
\$\$\$ \$	45.8~66.5		_	
φ300×1500	45.8~118	約07	\square	
\$\$\phi 400 \times 1200\$	45.8~66.5		\bigcirc	
\$ 500×1500	42.6~76.2			

注) (断面幅)×(断面高さ)×(柱長さ)

積分して求めた塑性変位は、断面寸法に関わらず一定であり、応力–塑性変位関係は一致することが確認される. よって、横拘束圧 p_e が同程度の場合、図ー1の $G_{f,c}$ は、柱高さおよび断面寸法に関わらず一定であると判断され、 寸法 250×250×750mm、 ϕ 300×900mmの供試体形状の実験結果のみに基づき提案した参考文献 1)のモデルは、異 なる断面寸法を持つ部材にも同様に適用可能であると推察される.

キーワード:高強度材料, 圧縮破壊エネルギー, 有効横拘束圧, 塑性変形量, 寸法効果 連絡先:〒980-8579 宮城県仙台市青葉区荒巻字青葉 6-6-06 TEL:022 (795) 7449

4. 小型・大型 RC 柱の実験結果の再現解析

提案モデルは、圧縮強度点(*ε*_{cc}, *σ*_{cc})と横拘束筋の破断やせん断すべり面の形成前と見なせる点(*ε*₅₀, 0.5*σ*_{cc})を 通る関数で表され、応力上昇域は Fafitis and Shah³⁾のモデル、圧縮強度発現後の軟化曲線は Cusson and Paultre⁴⁾ のモデルを用いている.提案モデルを用いて、**表**-1の小型 RC 柱から大型 RC 柱の実験結果の再現を試みる. 実験結果と計算結果の比較の一例を図-4 に示す. 横軸は、柱長さに対する平均ひずみである. 250×250×1500mm 供試体のように、実験結果と計算結果に差がある供試体も含まれるが、それらのばらつきは 参考文献 1)で示した類似の結果と同程度であり、提案モデルは、柱長さ(600mm~1500mm)、断面寸法(一辺 200mm~450mm、直径 Ø 300mm~Ø 500mm)やコンクリート圧縮強度(42.6~120N/mm²)の大きさに関わらず、横 拘束筋による横拘束を受けるコンクリートの平均化応力-ひずみ関係を再現できることを確認した.

5. まとめ

構成材料の強度および有効横拘束圧 *p_e*が同じ場合,局所ひずみ分布は断面寸法の大きさにより変化するものの,柱長さおよび断面寸法に関わらず圧縮破壊エネルギーは一定となる.この実験事実から,参考文献 1)で提案したモデルは,供試体寸法に関わらず適用できることになり,小型から大型 RC 柱の平均化応力--ひずみ関係を再現できることを確認した.

参考文献 1) 佐々木敏幸ら:コンクリート圧縮強度 120N/mm²と横拘束筋降伏強度 1400N/mm²までを用いたコンファインドコンクリートの平均化応力ーひずみ関係の定式化,土木学会第 60 回年次学術講演会, 5-496, pp.991-992, 2005. 2) 三浦稔ら:高強度構成材料を用いた大型 RC 柱の一軸圧縮実験,土木学会第 61 回年次学術講演会,投稿中,2006. 3) Fafitis, A. and Shah, S. P:Lateral Reinforcement for High-Strength Concrete Columns, High-Strength Concrete, SP-87, ACI, Detroit, Mich., pp.213-232, May.1985. 4) Cusson, D. and Paultre, P. : Stress-Strain Model for Confined High-Strength Concrete, Journal of Structural Engineering, ASCE, Vol.121, No.3, pp.468-477, Mar.1995.