鉄筋腐食膨張により生じるひび割れ面積推定手法に関する研究

京都大学 学生会員 高谷 哲 西日本旅客鉄道(株) 正会員 荒木 弘祐 京都大学 正会員 山本 貴士 正会員 服部 篤史 フェロー 宮川豊章

1 研究目的

筆者らは既報^{1),2)}で,鉄筋腐食により生じる膨張圧がかぶりコンクリートへのひび割れを引き起こし,剥落を 生じさせるまでのメカニズムをモデル化した実験を行っており,その実験結果と実際の鉄筋腐食の整合性につい

て検討している.本研究では,既報の研究の成果を踏まえ, より実構造物の配筋に近い供試体を作成し,実験を行った. 得られた実験結果の中から,半径変化量とひび割れ進展エネ ルギーの関係を用いて,ひび割れ面積を腐食長さと断面半径 減少量の関数で表すことを検討した.

2 既報^{1),2)}

筆者らは既報で,弾性体を用いた鉄筋腐食膨張圧モデル実験を行い,図-1に示すように系全体に与えられるエネルギー(U)と,コンクリートおよび弾性体に蓄積されるエネルギーの和(U_E+U_C)には差があり,この差は,主にひび割れの発生進展に消費・消散されるエネルギーであることを明らかにしている.また,コンクリート破壊エネルギーを G_F として,ひび割れ進展エネルギー(U_s)とひび割れ面積(A)の間には,次式の関係がほぼ成り立つことを示している.

 $U_S = G_F \cdot A$

(1)

3 実験概要

作成した供試体は 400mm × 150mm × 400mmの角柱供試体で, 内部に 20 × 400mmの円柱空洞を貫通させ,実構造物を模擬 するために直交配筋を設けた.弾性体は,位置決め治具を用 いて供試体中央に配置した.かぶりは 10,20 および 30mmの 3 種類作成し,内部に挿入する弾性体長さ(内圧導入長さ)は 50,100,150 および 200mmの 4 種類作成した.供試体はかぶ りおよび弾性体それぞれの組み合わせを 4 体づつ作成し,合 計 48 体作成した.載荷は既報²⁾に準じて行った.

4 実験結果と考察

4.1 ひび割れ進展エネルギー算出結果

半径変化量とひび割れ進展エネルギーの関係の一例を図-3に示す.両者の関係は,すべての供試体で同様の傾向を示 す結果となり,概ね最大内圧時を変曲点とするS字曲線形状 の関係となった.得られたS時曲線は半径変化量に対して凹 凸が少なく,線形近似したところ,相関係数は0.98~0.99で あった.ここから,半径変化量とひび割れ進展エネルギーの

キーワード 鉄筋腐食 G_F 断面半径減少量 ひび割れ面積

連絡先 〒606 - 8501 京都市左京区吉田本町京都大学工学部 5 号館構造材料学研究室 TEL075 - 753 - 5102

関係は切片 0 の直線で近似できることが分かった.このこと から,半径変化量とひび割れ進展エネルギーの関係式を得る ことにより,ある半径変化量の時に発生しているひび割れ進 展エネルギーを推定することが可能であると考えられる.

半径変化量は腐食生成物層を含めた見かけ上の鉄筋半径と 健全鉄筋半径の差である.腐食膨張倍率を一定とすれば,図 -3横軸の半径変化量は一次関係で鉄筋の断面半径減少量に 換算することができる.一方,G_Fを一定とすれば式(1)より, 図-3縦軸のひび割れ進展エネルギーとひび割れ面積の間に は一次関数関係が成り立つ.半径変化量とひび割れ進展エネ ルギーの関係が線形近似できることから,断面半径減少量と ひび割れ面積の関係も線形関係であると考えられる.そこで, 実験終了時のひび割れ面積を求め,実験終了時の換算断面半 径減少量とひび割れ面積の関係を整理することとした.

4.2 ひび割れ面積算出方法

図 4に示すように,CAD上で剥離ひび割れを三角形で近 似し,各辺の長さを求めた.このトレース図はコンクリート 表面への投影図となっているため,三平方の定理を用いて図 -6斜線部三角形の三辺の長さを求め,ヘロンの公式により 斜線部の面積を算出した.各三角形の面積の総和を剥離ひび 割れ面積とした.軸ひび割れについては,(ひび割れ長さ)× (かぶり)を軸ひび割れ面積とした.剥離ひび割れ面積と軸 ひび割れ面積の和をひび割れ面積とした.

4.3 ひび割れ面積推定式

得られた換算断面半径減少量とひび割れ面積の関係を図-5に示す.それぞれの直線の傾きをkとおき,かぶりおよび 内圧導入長さが傾きkに与える影響について整理した.結果 を表-1に示す.表-1を見ると,傾きkはかぶりの影響は 受けず,内圧導入長さが大きくなると傾きkが大きくなるこ とが分かった.内圧導入長さと傾きkの関係を図-6に示す. 図を見ると,内圧導入長さと傾きkは概ね線形関係にあるこ とが分かった.以上より,ひび割れ面積Aは,内圧導入長さ Lおよび断面半径減少量 rを用いて次式により算出できるこ とが分かった.

コンクリート表面に投

	五派の 頃で(K)			
	L50	L100	L150	L200
C10	86230	108761	129543	171067
C20	60639	126020	140078	244915
C30	68115	98636	156815	264454
内圧導入長さ毎平均	71661	111139	142145	226812

図-6 内圧導入長さ毎の傾き

 $A = k\Delta r = 1085 \cdot L \cdot \Delta r$

(2)

内圧導入長さは,実構造物における腐食長さ相当し,式(2)は,腐食長さと断面半径減少量が分かればひび割れ面積を推定できることを意味している.今後ひび割れの進展パターンを把握することにより,内部ひび割れの 進展の予測が可能であると考えられる.

参考文献

1)高谷哲,荒木弘祐,服部篤史,宮川豊章:弾性体を用いた鉄筋腐食膨張圧モデル化の実験的検証,土木学会年 次講演会,5-275,2004 2)高谷哲,荒木弘祐,服部篤史,宮川豊章:コンクリート破壊エネルギーG_F算出方法 に関する研究,コンクリート工学年次論文報告集,Vol27,2005