FWD 試験時におけるアスファルト混合物層のひずみに関する検討

東亜道路工業(株) ○真鍋和則 阿部長門

(財)鉄道総合技術研究所 桃谷尚嗣 関根悦夫

1. はじめに

本稿は、図1に示 す2種類の試験舗装 において、FWDによ る測定たわみから逆 解析にて求めた弾性 係数を用いて、アス ファルト混合物層の ひずみを順解析にて 算出し、実測ひずみ との比較検討を行っ たものである.FWD

の載荷荷重は,貨物コンテナヤードにおけるフォークリフト荷 重を想定し,49kN,78kNおよび98kNの3種類を目標とした. 基層下面に埋設したひずみゲージの配置図を図2に示す.

2. 弾性係数の推定結果

たわみの測定は、載荷版中心とゲージ No.4 の中心が一致する ように FWD を設置して行った.たわみ曲線を図3に示す.各載 荷荷重条件において、粒度調整砕石を用いた試験舗装Aの方が、 たわみが大きく測定されており、49kN 載荷時における D_0 たわ みは試験舗装 B の約 1.8 倍となっている.逆解析により推定し た弾性係数を表1 に示す.なお、試験舗装を構築した箇所は、 コンクリート製の土槽であったため、基盤の弾性係数を

距離(cm)

図3 各試験舗装に関するたわみ曲線

25000MPaに固定して解析を 行った.各層の弾性係数は, 載荷荷重に関わらず概ね一 致しており,良好な結果が得 られた.採取した表基層のコ アを用いて,レジリエントモ ジュラス試験を行ったとこ ろ,得られた*Mr*を載荷時間

表1 谷	す「載何何里!	こおける	弾性係数	2	Mr

たわみ (mm)

試験 載荷荷重	弾性係数(MPa)				左泪	收盂泪庙	甘因泪中	Mr'		
	(hN) 表基層	基層	<u> </u> 敗般 敗	路床 基般	×(血 (°C)	始囬伍及 (℃)	を増値及 (℃)	(MPa)		
HIUAR	(KI V)	補正前	20℃補正	14日(1993		25°m.	(0)	(0)	(0)	(IVII a)
	49.71	5040	7420	290	72	25000	28.1	28.1	29.1	
А	77.54	5220	7880	272	74	25000	25.6	28.0	29.6	
	96.99	5000	7920	284	70	25000	25.9	29.3	31.0	6840
	49.75	5380	8240	3600	104	25000	27.6	29.1	30.1	0040
В	78.59	5800	8820	3600	100	25000	25.8	28.6	29.9	
	98.15	5380	8320	3440	96	25000	25.8	29.0	30.3	

※表中のMr'は表層と基層の平均値

補正した *Mr*¹ は, FWD 測定結果による表基層の弾性係数と概ね一致した. 試験舗装 B における路床(礫質砂)の弾 性係数が若干大きく推定されている. これは, セメント安定処理路盤の弾性係数が高く推定されていることが, 逆解析 の結果に影響を与えている可能性があると考えられる.

キーワード: FWD, ひずみ, 弾性係数, Mr', 解析ひずみ
連絡先: 〒300-2622 茨城県つくば市要 315-126 TEL029-877-4250 FAX029-877-4151

〒185-8540 東京都国分寺市光町 2-8-38 TEL042-573-7276 FAX042-573-7413

-207-

3. 実測ひずみの結果

各試験舗装におけるNo.3~No.5およびNo.10~No.12の実測ひず みを,引張側(+)と圧縮側(-)に分別し,載荷荷重との関係を 表したものを図4に示す.載荷版直下では引張ひずみが生じてお り,載荷版周辺では圧縮ひずみが生じている.試験舗装Aで得ら れた実測ひずみは,試験舗装Bの実測ひずみに比べ,約1.2倍とな っている.両試験舗装ともに,載荷荷重が大きくなればひずみの 絶対値は大きくなっている.粒度調整砕石を用いた試験舗装Aで は,路盤の剛性が小さいため,*T_A*が大きいにも関わらず,引張ひ ずみが大きくなっている.圧縮ひずみも載荷荷重の増加に伴って 増大しているものの,その値は引張ひずみに比べて小さい.

4. 実測ひずみと解析ひずみの比較

解析は、多層弾性解析(GAMES)とFEM(MSC Nastran)で行った.解析条件を表2と図5に示す.表基層と路盤の弾性係数は、 表1に示す各載荷荷重における平均値とした.路床弾性係数は、 試験舗装Aと試験舗装Bの逆解析結果に差があったため、路床構 築時において小型FWDの測定結果から推定した70MPaを使用した²⁾.なお、表基層の弾性係数については、測定時の基層温度にお ける値に補正した.図6に98kN目標時の実測ひずみと解析ひずみ の比較結果を示す.試験舗装Aについては、円形等分布荷重が基

本となる多層弾性解析では実測値よりひずみが大きくなるが, FWD の載荷版を剛体とした FEM では実測値との一致度 が向上する.一方,試験舗装 B については,解析方法に関わらず,解析ひずみの方が小さくなっている.これは,解 析モデルの関係で,表基層とセメント安定処理路盤を連続体としている

ため, セメント安定処理路 盤の剛性に拘束され, 基層 下面の引張ひずみが発生 し難くなったと考えられ る.これを解決するには, 層間の境界条件にすべり を考慮する必要があると 考える.

<参考文献>1) 阿部長門ほ か:室内試験とFWD 試 験によるアスファルト 混合物の弾性係数の比 較,土木学会第58回年 次学術講演会,2003.9. 2) 穴沢秀昭ほか:小型 FWD を用いた多層地盤 の剛性評価の検討,土木 学会第58回年次学術講 演会,2003.9.

表2 多層弾性解析および FEM 解析条件

試験 舗装	層名	材料名	弹性係数 (MPa)
	表基層	アスファルト混合物	5300
А	路盤	粒度調整砕石	280
	路床	礫質砂	70
	基盤	コンクリート	25000
	表基層	アスファルト混合物	5300
В	路盤	セメント安定処理	3500
	路床	礫質砂	70
	基盤	コンクリート	25000

図6 解析ひずみと実測ひずみの比較