航空写真・衛星画像を用いたデジタルマッピングにおける標定残差について

広島工業大学 正会員 菅 雄三 広島工業大学大学院 学生員 北野 幸宏 広島工業大学大学院 学生員 阿曽沼 和義 日本キャディック 正会員 小西 智久

1.はじめに

地上測量におけるデジタルマッピングでは, GPS 測量及び電子平板 CAD 測量が用いられている. 本研究で は、地上測量と航空写真・衛星画像を組み合わせたデジタルマッピングについて提案し、その標定残差につい て考察を行い,得られた知見について報告する.

2.対象地域及び使用データ

本研究では,広島市佐伯区の広島工業大学周辺を 対象地域として,表1に示す航空写真データ及び衛 星画像データを使用した.また,広島工業大学学内 で行った電子平板測量 CAD データを使用した. EROS-A1 衛星データはステレオペア画像,

Image Type Resolution Date EROS-A1 Pan:1 (1.8m) 2003.5.3 (Stereo Pair Image) **OuickBird** Pan:1(0.61m) 2004.10.19 (Single Image) Multi:1,2,3,4(2.44m) Aerial photograph Color(0.40m) 2001.4.19 (Stereo Pair Image)

表1 使用データ

QuickBird 衛星データは,オルソ補正済のデータ(Multi)を用いた.また航空写真データについては,国土地 理院撮影のアナログ航空写真データのステレオデータを使用した.

3.GPS, CAD によるデジタルマッピング

GPS 測量においては,広島工業大学学内において GPS 基準点を 30 点選定し,単独スタティック測位による 観測を行った.ここでは,受信観測データに基づき電子基準点データを用いて,基線解析,点検計算,三次元 網平均計算により平面直角座標値及び標高値を算出した.次に,この GPS 基準点観測データを,ノンプリズ ム型トータルステーションによる電子平板 CAD 測量の基準点として,電子平板 CAD 測量を行い,3次元 CAD データを生成した(図1).ここでは,基準点,道路,建物を作図した.また,建物間で GPS 電波の受信が困 難な場所については,後方交会法により基準点を増設した.GPS 観測データの標準偏差は,X 方向が 0.0194 ~0.1246m, Y 方向が 0.0142~0.1261m, Z 方向が 0.0258~0.32m であり, CAD による電子平板測量の基準点と して用いた.

電子平板 CAD 測量における標準偏差は,天頂角については最小値が1秒,最大値が-66秒,平均値が9.18 秒であった . 水平距離については最小値が 0.001m , 最大値が 0.012m , 平均値が 0.007m となり , これらの標定 結果に基づき, 3次元 CAD によるデジタルマッピングを行った.

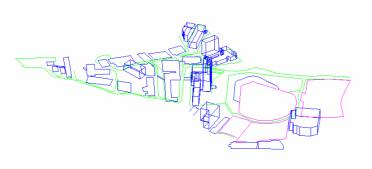
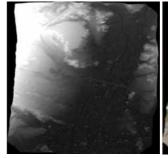
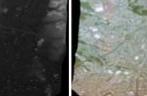




図1 電子平板測量3次元CADデータ(広島工業大学)

(a) DEM

(b) オルソ補正画像

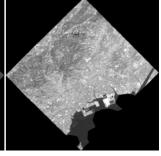
図2 航空写真

キーワード: GPS・CAD, 航空写真データ、高分解能衛星画像、標定残差評価

連絡先: 〒731-5193 広島県広島市佐伯区三宅2丁目1番1号 広島工業大学 菅 雄三 研究室 TEL&FAX: 082-922-5204

4. 航空写真による DEM 生成及びオルソ補正処理

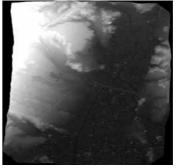
航空写真,ステレオデータによる数値標高モデル(DEM) 及びオルソ補正による正射投影画像の生成に際しては, LPS (Leica Photogrammetry Suite)を使用した.以下に処理 手順を示す.


RC-30 カメラモデルによる内部標定及び,ステレオ画像 範囲において任意の地点で行った GPS 観測データから算 出した 3 次元座標を使用し,両画像のオーバーラップ領 域で最低 6 点以上の GCP を抽出.

抽出した GCP からタイポイントを選定し,空中三角測量における画像間の相対的な誤差を1画素以内に収める. リサンプリングサイズを40 cmとして,DEM を生成(図2(a)).

生成した DEM を用いて、オルソ画像を生成(図2(b)).

5.高分解能衛星画像による DEM 生成及びオルソ補正処理 EROS-A1 衛星データの幾何学的処理に際しては, LPS を使用して以下の処理を行った.



(a) DEM

(b) オルソ補正画像

図 3 EROS-A1 衛星画像

(a) DEM

(b) オルソ補正画像

パスファイルによる内部標定及び,ステレオ画像範囲において任意の地点で行った GPS 観測データから算出した 3 次元座標を使用し,両画像のオーバーラップ領域で最低 6 点以上の GCP を抽出.

抽出した GCP から , タイポイントを選定し , 空中三角測量における画像間の 相対的な誤差を 1 画素以内に収める .

リサンプリングサイズを 1.8mとして, DEM を生成(図3(a)).

作成した DEM を用いて, オルソ画像を生成(図3(b)).

QuickBird 衛星データの幾何学的処理に際しては,オルソ補正済みの画像を使用した.ここでは,航空写真から生成した DEM を用いてリサンプリングサイズを 2.4m として QuickBird 画像に対してオルソ補正処理を行った(2.4m 2), (2.4m 2).

3 航空写真オルソ画像と

り 別工与兵のルク国家と

CAD データの合成画像

6 . 標定残差結果の評価

空写真及び衛星画像データを用いて,電子平板測量CADデータとの合成処理を行った(図5).ここでは,標高差

オルソ補正を行った航

表 2 標定残差結果(単位:m)

Points		EROS-A1(1.8m)			QuickBird (2.4m)		Aerialphotograph (0.4m)		
		Δx	Δy	Н	Δx	Δy	Δx	Δy	Н
地点	(標高:-0.71m)	2.25	-4.08	9.86	0.1	-3.03	-2.81	2.18	-0.76
地点	(標高:15.8m)	-0.71	0.95	6.9	1.78	-1.61	-0.99	1.85	1.2
地点	(標高:67.8m)	3.89	-2.27	-9.6	6.11	-3.3	-0.86	-0.31	3.7

のある任意の 3 地点における標定残差を算出し,各画像での比較を行った(表 2).この 3 地点における残差は,QuickBird(2.4m分解能)では $0.1 \sim 6.11$ m, EROS-A1(1.8m分解能)では $-0.71 \sim -4.08$ m,航空写真(0.4m分解能)では $-0.31 \sim -2.81$ mであった.また,GPS観測データとの標高の差異は,航空写真では-0.76m ~ 3.7 m, EROS-A1では6.9m ~ 9.86 m であり,画像の解像度が良くなるに従い、残差が減少していることが分かった.

7.まとめ

本研究では,航空写真及び高分解能衛星画像を用いて,DEM 及びオルソ画像の生成を行った.また、それぞれのオルソ補正画像と CAD データとの合成処理を行い,標定残差を算出することにより,デジタルマッピングの精度評価を行った.その結果,解像度の違いによる標定残差の傾向を明らかにすることができた.