固化処理土中に敷設した補強材の引抜き特性

山口大学大学院	学	久保田晃		
山口大学大学院	正	山本哲朗	ΤĒ	鈴木素之
宇部三菱セメント研究所	正	田坂行雄	非	米田 修
宇部三菱セメント	非	山田一義	非	金城徳一

1. **まえがき** 帯鋼補強土壁工法では土と補強材の間の摩擦抵抗を十分に見込める砂質土系の地盤材料が選定される.近年,良質な砂質土の入手は容易ではないため,盛土材として不適な細粒分含有量*F_e*の多い現場 発生土に固化処理を行い盛土材として利用する場合がある.しかし,施工方法を含め設計手法が十分に確立 されていないのが現状である.本文では,固化処理土中の補強材の引抜き抵抗性の改良効果を把握するため に,新たに開発した引抜き試験装置を用いて,固化材添加量や鉛直圧等を変えた条件で実施した引抜き試験 結果について報告する.

<u>2. 試験概要</u>

(1) 試料土・固化材 用いた試料土は山口県宇部市川上で採取したシルト質土(川上シルトと称す)と山口 県下関市で採取した砂質土(下関砂質土と称す)であり,土質特性を表-1に示す.川上シルトはF_cが46.9% であり,本工法における盛土材料の適用上限のF_c=25%の基準値¹⁾を超えており,このままでは盛土材として 使用できないため,固化材を添加・混合して改良土として使用した.なお,固化材には一般軟弱土用固化材 を用いた.下関砂質土においてはF_cの基準値を満たしており,良質土として引抜き試験を行った.

(2) **引抜き試験方法**²⁾ 図-1 に引抜き試験装置を示す.模型 地盤となる土槽の寸法は幅 70 cm,高さ 30 cm,奥行き 20 cm であり,所定の初期含水比 w_0 と固化材添加量 Q_c で調製した固 化処理土を2層に分けて充填した.その際,気泡を除去する ためにバイブレーターにより振動を与えた.第1層目の充填 後,土槽底面から高さ 15 cmの位置に補強材を設置した.使 用した補強材は平滑な帯鋼(幅 6 cm,厚さ 0.5 cm)であり埋 設長を 60 cmとした.処理土の投入後,鉛直圧 σ_v を加えて所 定期間(T_c)恒温・恒湿室で養生した.養生後,直ちに引抜 き試験を行い,補強材の引抜き力Tと水平引抜き変位量 δ を測 定した.本研究では Q_c を 60,80,100 kg/m³, T_c を 1,3 日, σ_v を 0,50,100 kPaのように変化させた.

<u>3. 試験結果と考察</u>

(1) **固化処理土の引抜き挙動**図-2 に処理土と未処理土の δ と引抜き応力 τ の関係を示す.この場合,処理土の最大引抜き 応力 τ_{max} は未処理土のそれよりも著しく高く, $\sigma_v = 50$ kPa, 100kPaでそれぞれ約10倍,約5倍の値を示した.これは処理 土と補強材の定着部の付着力が増加したためと考えられる. また, τ_{max} の発現後に τ が急激に減少する脆性的挙動を呈して おり,定着部がほぼ完全に剥離したことが原因として考えら れる. τ_{max} の発現前は不安定な挙動を示しており,これにつ

キーワード:補強土,固化処理土,引抜き試験,補強土壁,補強材

図-1 引抜き試験装置(模式図)

表-1 試料の土質特性					
試料名		川上シルト	下関砂質土		
自然含水比	(%)	22.2	23.3		
土粒子の密度	(g/cm^3)	2.638	2.624		
湿潤密度	(g/cm^3)	1.979	—		
礫分	(%)	18.5	20.2		
砂分	(%)	34.6	56.5		
シルト分	(%)	34.9	11.7		
粘土分	(%)	12.0	11.6		

いては定着部の剥離が段階的に起こったためと考えている.処理土と良質土の引抜き挙動を比較するため, 図-3に処理土と下関砂質土の*δと t*の関係を示す.下関砂質土は前述の盛土材の適用範囲内にあるので,その 引抜き試験結果は良質土の基準値とすることができる.この場合,川上シルトはこのままでは盛土材として 使用できないが,固化処理をすることによって良質土と同等以上の引抜き抵抗を発揮し,盛土材として利用 することができることが示唆される.

(2) 養生時間・固化材添加量および鉛直圧との関係,土槽内の強度・含水比分布 図-4~6 にそれぞれ T_c , Q_c , $\sigma_v \geq \tau_{max}$ の関係を示す. T_c および Q_c の増加に伴って τ_{max} は増加していることがわかる. T_c および Q_c の増加 に伴って処理土中のセメンテーションが発達したため,処理土と補強材との付着力が増加したことが原因と して考えられる.図-7 に試験後の土槽内の換算一軸圧縮強さ q_u^* と含水比の分布を示す.試験条件は Q_c =60kg/m³, T_c =3日, σ_v =50kPaの場合であり, q_u^* は引抜き試験後の土層において補強材を挟みながら深度方 向に測定した土壌硬度から事前の換算表に基づいて推定した値である.含水比は補強材が位置する土槽中央 から上下端に向かって低下しており,逆に q_u^* は中央部から上下端に向かって高くなっている(補強材の敷設 部分で実測した固化処理土の一軸圧縮強さ q_u は 640kPaである).これは排水面に近い部分で圧密が進行した 結果と考えられる.

4. 結論 本研究で得られた知見は以下のとおりである.

- (1) 本装置を用いた実験結果から,補強土壁工法に使用できない土(細粒土が主体)を固化処理することに よって最大引抜き応力を大幅に増加することが可能なことを確認した.
- (2) 今回の実験では,固化処理土の最大引抜き応力は盛土材の適用範囲内にある下関砂質土の最大引抜き応力と同等以上を示し,最大で約5倍となった.

[参考文献]

- 1) 土木研究センター:補強土(テールアルメ)壁工法 設計・施工マニュアル 第3回改訂版,2003.
- 2)米田ほか:固化処理土を用いた補強土壁工法における補強材の引抜き試験(その1),第41回地盤工学 研究発表会講演論文集,2006(投稿中).