水温成層場における乱流構造と流速分布に関する研究

首都大学東京	正会員	横山	勝英
首都大学東京	正会員	新谷	哲也
首都大学東京	学生会員	○中沢	哲弘

1. 研究目的

貯水池の水温や流速の鉛直微細構造を把握すること は、濁質やプランクトンなどの物質輸送をシミュレー トするうえで重要であり、実験水槽における研究例は 多い.しかし、現地では特に流速・乱流に関する詳細 な調査例は少ない. そこで本研究では、宮城県七ヶ宿 ダム貯水池において超音波流速計と超音波乱流計を用 いて、貯水池内部での微細な流れの構造について調べ た.

2. 現地観測の手法

七ヶ宿貯水池は貯水容量が約1億m³であり, 湛水長 約 4.5km, 湛水幅約 0.9km のほぼ長方形の形状をして いる. 観測は水深 38m の貯水池中央部で行った. 観測 日の水温分布は表層が 25℃,下層が 9℃であり,水深 15m付近に水温躍層がみられた.

計測機器の設置概要を図1に示す.まず,全体の流 速場を把握するために超音波流速計を湖底に設置し, 20 分間隔で水深 0.3m ごとの流速を計測した. また, 流速の鉛直微細構造を知るために,超音波乱流計を自 作の架台に取り付け、水中重量がほぼ0になるように 浮力を調節して自由落下させた. 落下速度は毎秒 10cm ~20cm であり,水深 30m 付近までサンプリング周波 数 64Hz で計測した. 計測は 15 分から 20 分間隔で合 計49回行った. さらに、これとは別に超音波乱流計を 水温躍層に固定し、5分ごとに2.5分間、サンプリング 周波数 32Hz で微流速を計測した.いずれの計測でも, 主軸方向流速(u)とそれに直交する流速成分(v),鉛直 方向流速(w)を計測した.

3. 全体的な流速分布構造

超音波流速計による計測から図2が得られた. 白抜き の部分が上流方向の流速、灰色の部分が下流方向の流 速を示している.周期的な往復流が発生しているが, 標高270mを境に流況が異なっていた.

下層では単純な往復流が、上層では上方に伝搬する

キーワード 内部流動,乱流,レイノルズ応力 連絡先

図1 各装置の設置概要

図2 主軸方向流速の時系列·鉛直分布

図3 落下式乱流計の水中姿勢

〒192-0397 東京都八王子市南大沢 1-1 首都大学東京大学院 TEL 0426-77-1111

ような波動が読み取れる. 流速は最大で 80mm/s であった.

4. 流速の鉛直微細構造

落下式乱流計の姿勢の安定性を図3に示す. x方向, y 方向の傾斜はいずれも2°以内となっており,ほぼ直立し た状態で落下していた.次に流速計測の安定性を確認す るために,図4に超音波流速計で得られた流速との比較を 示す.これより両者は一致しておらず,自由落下式の乱 流計測では流速分布を計測することが困難であることが わかった.

しかし,流速計のデータから上下1mの速度勾配 (*dŪ/dy*)を計算すると図5のようになり,落下式乱流計の 流速と負の相関を示すことが分かった.これは,装置が 平均流に乗って落下した結果,加速度成分のみを計測し ていたことを表している.なお,符号が逆なのは落下し ながら計測するため鉛直上向きの座標で見ると,逆向き になるためである.

5. 躍層内部の乱流構造

往復流の反転が顕著な標高 275m 付近で計測した定点 でのレイノルズ応力を図6に示す.レイノルズ応力は, 流速成分を平均流と変動成分に分離し, – *pu'w'*で計算し た.層内の流速が逆向きに転じる時間にレイノルズ応力 が大きくなっていることがわかる.レイノルズ応力と速 度勾配の関係は式(1)のように表せる.

$$-\rho \overline{u'w'} = \rho \varepsilon \frac{d\overline{u}}{dy} \tag{1}$$

そこで、乱流計測水深における速度勾配を流速計のデ ータ(図5)から求め、レイノルズ応力との対応を調べたと ころ相関係数は|r|=0.588 であった.一方、落下式乱流計 で得られた流速データ(図4)が速度勾配であると仮定し てレイノルズ応力との相関を調べたところ図7が得られ た.相関係数は|r|=0.714 となり、より高い相関が認めら れた.超音波流速計の精度は8mm/sであり、平均的な流 動状況は把握できるが、微細な流速構造は計測できない. 一方落下式乱流計の精度は0.1mm/sであり、平均流の計 測こそ困難ではあるが、局所的な速度勾配を計測するに は適していることがわかった. 渦動粘性係数は約2.6× 10³m²/s となった.これは沿岸域で計測された渦動粘性係 数のオーダーと合っており、今回の観測で用いた手法 の妥当性を示しているといえるであろう.

図4流速分布に関する流速計と乱流計の比較

図5速度勾配と流速の比較

図6 定点のレイノルズ応力と流速の時系列分布

図7 速度勾配とレイノルズ応力の相関図