新門司埋立地の高潮水害に対する数値シミュレーション

立正大学	学生会員	〇岡田	尚樹
立正大学	正会員	小川	進
千葉商科大学	非会員	宮田	大輔

1. はじめに

本研究は、台風 9918 号により引き起こされた、北 九州市新門司南地区における越波水害を対象とした 流入量推定、および分布型モデルによる湛水状況の 可視化を行なった. 越波流量を推定するために Longues- Higgins により求められた波高と周期の結 合分布を用いて台風襲来時の波浪を再現した. この 結果をもとに数理モデルを作成して非定常流の数値 シミュレーションを行なった.

2. 研究対象概要

台風 9918 号は 1999 年 9 月 24 日早朝に九州,山形 地方を直撃した.勢力・経路ともに 1991 年に襲来し た 9119 台風(りんご台風)と類似しているが, 9119 台 風が干潮時に襲来しているのに対し 9918 台風は大 潮満潮時に襲来したことなどにより被害が増大した. 研究対象地とした新門司埋立地では台風襲来時の波 力により北側の1号護岸と南側の2号護岸で倒壊が 発生し,非倒壊部からの越波と合わせて甚大な浸水 被害が生じた.

3. 方法

3.1. 波高と周期の結合分布

台風襲来時の波浪状況を再現するために Longuet-Higgins により導かれた波高と周期の結合分布を用 いた. 波高と周期との結合分布 $P(\tilde{H},\tilde{T})$ は次式で与 えられる.

$$P(\widetilde{H},\widetilde{T}) = \frac{\pi \widetilde{H}^2}{4\nu} \exp\left[-\frac{\pi}{4} \widetilde{H}^2 \left\{1 + \frac{(\widetilde{T}-1)^2}{\nu^2}\right\}\right] \quad (1)$$

ここで、 \widetilde{H} :平均波高 \overline{H} で無次元化した波高、 υ :

スペクトル幅を表すパラメータ、 \widetilde{T} :平均周期 \overline{T} で

キーワード	結合分布,越波量,スタガード格子		
連絡先	〒360-0194 埼玉県熊谷市万吉 1700	立正大学小川研究室	TEL 048-539-1652

無次元化した周期である. 平均波高と平均周期は運 輸省第四港湾局によるものを使用した.

3.2. 越波量推定

算定された個別波を sin 波と仮定して, せきの越 流公式を使用して越波量を求めた. 非倒壊部に対し ては全幅せきの越流公式を, 倒壊部に対しては長方 形せきの越流公式を用いた. 以下にその式を示す.

$$Q = CBh^{3/2} \tag{2}$$

ここで、Q:越流量(m³/sec/m)、C:越流係数、B:水路幅、h:越流水深(m)である.図1に越波量推定の 模式図を示す.ある1波の波高が護岸高を超えた時間 t_1 、およびその波の波高が護岸高より低くなる時間 t_2 の間を 0.01 秒刻みで分割し、各区間の越波量の 合計から1波ごとの越波量を求めた.なお、潮位は 観測データが1時間刻みであったため内挿を行い、1 分刻みのデータとして使用した.

3.3. 分布型シミュレーション

埋立地の氾濫を二次元一層流としてプログラムを 作成し推定した越波量と空中写真から作成した DEM を入力として数値シミュレーションを行なっ

表1 9月24日午前7時における波の頻度. 縦軸が

波高(m)、横軸が周期(s)を表す

↓ 波高· 周期→	2.5	5.0	7.5	10.0	12.5	15.0			
0.25	2	2	2	2	2	2			
0.5	11	14	15	12	9	5			
0.75	15	29	32	21	8	2			
1	10	36	44	19	3	0			
1.25	4	32	45	12	1	0			
1.5	1	23	37	5	0	0			
1.75	0	13	26	2	0	0			
2	0	6	15	0	0	0			
2.25	0	2	8	0	0	0			
2.5	0	1	3	0	0	0			
2.75	0	0	1	0	0	0			
3	0	0	0	0	0	0			

図2 各地点における毎分の越波量

た. 式(3)に水の連続式を,式(4),(5)にx, y各方向 に対する運動量方程式を示す.

$$\frac{\partial h}{\partial t} + \frac{\partial uh}{\partial x} + \frac{\partial vh}{\partial y} = 0$$
(3)

$$\frac{\partial uh}{\partial t} = -g \frac{\partial (h+H)}{\partial r} - gn^2 u \frac{\sqrt{u^2 + v^2}}{h^{1/3}} \qquad (4)$$

$$\frac{\partial vh}{\partial t} = -g \frac{\partial (h+H)}{\partial y} - gn^2 v \frac{\sqrt{u^2 + v^2}}{h^{1/3}}$$
(5)

ここで*h*:水深(m), *u*:x 方向の速度成分(m²/s), *v*:y 方向の速度成分(m²/s), *H*:標高(m), *n*:マニングの 粗度係数である.

4. 結果

4.1. 結合分布による波の生成

波高と周期の結合分布より求めた9月24日午前7時における地点の各波高,周期の波の頻度を表1に 示す. *ਜ* =1.89(m), *T* =6.75(s)である.

4.2. 越波量

結合分布により再現した波浪条件から算定した 1 号護岸,2 号護岸,非倒壊部における毎分の越波量 を図2に示す.倒壊部では、非倒壊部と比較して越 波量が数倍から数十倍増加していることが分かる.

図 3 シミュレーション実行画面

4.3. シミュレーション結果シミュレーションの実行画面を図3に示す.

5. 結論

本研究では、北九州市新門司南地区における越波 水害を対象とした流入量推定、および数値シミュレ ーションによる湛水状況の可視化を行なった. 越波 量推定の結果から倒壊部では、非倒壊部と比較して はるかに多くの越波があったことが判明した.また、 数値シミュレーションによる湛水状況の再現を行な うことができた.

参考文献

- [1] 齋藤恵介,9918 台風による新門司埋立地水害の 推定,日本写真測量学会,平成14年度年次学術 講演会発表論文集,2002.
- [2] 北九州市港湾局,北九州新門司地区被害原因調 查委託報告書, 2000.