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ABSTRACT
Performance of dampers in controlling large-amplitude vibration of stay cables in bridges depends on many parameters in 
which the sag, inclination and bending stiffness of the cable, as well as the effect of stiffness of anchor tube have significant
influences.  In this study, simple formulas of the modal damping ratio of the cables with attached dampers are analytically 
derived considering the sag in associated with inclination and stiffness of anchor tube. Other types of dampers encountered in 
practice e.g., high-damping rubber devices is also analyzed.  Also the combination of two dampers, each near one end of the 
cable, is shown to proportionally raise the modal damping level. 

1. INTRODUCTION
Performance of a damper in suppressing large-amplitude vibration of stay cable is often evaluated in terms of the modal 
damping raised after the damper is added.  This renders a complex eigenvalue analysis of cable with damper from which the 
modal damping value of an individual mode is determined by the imaginary part of the eigenfrequency. Kovacs (1982) first 
identified the existence of an optimal size for a transverse added viscous damper. After that, Yoneda and Maeda (1989) and 
Uno et al. (1991) have conducted numerical studies on the optimum damper size.  Notable is the work of Pacheco et al. (1993)
who have obtained a universal estimation curve relating the modal damping ratio to the damper size.  In a different approach,
Krenk and his associates have utilized a small perturbation on well-known solutions of cable without damper to derive 
analytical solutions for the problems of a horizontal cable with a transverse damper.  In 2000, Krenk successfully derived a
simple analytical formula for the numerical results of Pacheco et al. Further the analytical solutions have been extended to 
consider the influence of the cable sag (Krenk and Nielsen, 2002).  In the present study the damping effect of a transverse 
damper on a general inclined cable with sag is investigated, considering the anchor tube stiffness of internal dampers. The 
study aims to derive simple formulas relevant to the design of a damper for stay cables considering influencing factors.  The 
remains of the paper addresses the effect of a practical damper device using high-damping rubber (HDR), and the combined use 
of two dampers, one viscous damper at the lower end of the cable and one HDR damper at the other end.  

2. DESIGN OF AN INCLINED SAG CABLE WITH A DAMPER
Consider an inclined cable with a transverse damper attached at location xc from the lower end (Fig. 1).  The cable has mass per 
unit length m, chord length L, and is inclined at angle   to the horizontal.  Assume that the cable tension is large enough so that 
the static profile of the cable can be accurately described by the parabola.  If g denotes gravity acceleration; coshTH   is 

the chord tension; Th is the horizontal component of cable tension, the sag at mid-span is given by Irvine (1981):
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Krenk and Nielsen (2002) have derived analytical asymptotic 
results for a horizontal cable with sag. For an inclined cable, since 
only the gravity component perpendicular to the chord is involved 
(Eq. 1), the steeper the chord inclination the lesser the sag of the 
cable.  From their works, the damping ratio of an individual mode n
can be evaluated by an accurate approximation re-written here as
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where Rs is the reduction factor due to influence of  cable sag.
In case of a viscous damper, ttxvctf cc  ),()(  or cc vicF ~ , 
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where mHcxc

s

nn

0   is a non-dimensional damper parameter. Fig 1.  A model of an inclined cable with a damper

For anti-symmetric modes (n = 2, 4, 6...), Rs = 1 and mHcxcnn

0   where Lnn π0   is the wave number of a taut cable

3. INFLUENCE OF ANCHOR TUBE STIFFNESS
For an internal damper, i.e., the damper is concealed in the protective tube near the anchorage of the cable, the anchor tube 
stiffness may have some influence on the performance of the damper.  This influence is here considered by a stiffness of the 
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anchor tube, denoted as k, is in tandem with the damping 
coefficient c (Fig. 2). The damping force is given as 

)](),([)()( tvtxvctvktf kckc
  where vk(t) is the 

displacement of the anchor tube at the damper location, from 

which:
2)(1

1~
kc

kci
vciF cc 





 . Substituting Fc into Eq. (2):
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where n is as before and mHck s

nk

0  .  It is useful to 

interpret the influence of the tube stiffness as a reduction in 
this maximum damping value max

n  by Eq. (3). The parameter 

k in this condition becomes Hkxck   and the resultant 

damping ratio is max

k .  A reduction factor Rk then can be 

introduced as
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The factor Rk indicates the influence of anchor tube stiffness 
on the maximum damping ratio of the cable with damper and 
is illustrated in Fig. 2.  It is seen that the anchor tube stiffness 
reduces the damping effect, but not significantly. In addition, 
since k  is independent to the mode index n, the same 

reduction is applied for any vibration mode to be controlled.

4. HIGH-DAMPING-RUBBER DAMPER
For a HDR damper, the damping force is independent of 
frequency and expressed as ),()1()( txviKtf Rc  , from 

which )(~)1( Rc xviKF  , where K is the spring factor of 

the damper; and   is the loss factor of material. The distance 
of HDR damper from the cable anchorage is denoted as xR.  
Substituting Fc into Eq. (2) give the result 
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Fig 2.  Influence of anchor tube stiffness

Fig. 3.  Estimate curve for R  (  = 0.25)

where HKxRR  is a non-dimensional parameter of the spring factor. A typical curve showing the variation of R  versus 

R for    = 0.25 is shown in Fig. 3.  A useful feature of using HDR damper can be seen from Eq. (6): R is independent of 

mode index.  This means the same maximum level of cable damping can be achieved for all vibration modes.  

5. COMBINED EFFECT OF TWO DAMPERS
In order to increase the damping effect, using two combined units of dampers at two ends of the cable may be a possible 
solution.  In principle with such a damper configuration further stiffens the cable and the damping performance thus could be 
superimposed.  Similar to the development in case of a single damper, the effect of two dampers on the damping of cable can 
be also evaluated. The asymptotic expression of modal damping ratio, with cR xxx  , is 
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6. CONCLUSION
Simple formulas of the modal damping ratio of the cables with attached dampers have been analytically derived considering the
sag in associated with inclination and stiffness of anchor tube.  High-damping rubber devices is also analyzed. Finally the 
combination of two dampers, each near one end of the cable, is shown to proportionally raise the modal damping level.

REFERENCES
Pacheco BM, Fujino Y, Sulekh A. Estimation curve for modal damping in stay cables with viscous damper. Journal of Engineering 
Mechanics 1993; 119(6): 1961-1979.
Yoneda M. Wind vibration in cables of cable stayed bridges and its control (in Japanese). 2nd Colloquium on Vibration Damping 1993.
Irvine HM. Cable Structures. Dover, New York, 1981.
Krenk S. Vibrations of a taut cable with an external damper. ASME Journal of Applied Mechanics  2000; 67: 772-776.
Krenk S, Nielsen SR. Vibrations of a shallow cable with a viscous damper. Proceedings of the Royal Society London, Series A  2002; 458: 
339-357.

all modes

0 1 2 3 4

0

0.02

0.04

0.06

HKxRR 

LxR

R

H

xR

L

)1( iK 

0 20 40 60 80 100

0.8

0.85

0.9

0.95

1

kR

Hkxck 

all modes

H

c

xc


L

土木学会第61回年次学術講演会（平成18年9月）

-1032-

1-517


