シミュレーション波形を使った TDTG 法による欠陥形状再構成

1. はじめに

超音波を使った材料内部の欠陥検出と形状評価は、工学 上重要な問題である. 計測する波動場が超音波である場合 に限らず、観測した波動場のデータから散乱体の形状を推 定する問題は逆散乱問題と呼ばれている. TDTG法 (timedomain topological gradient method)¹⁾ \mathbf{k} , $\mathbf{h}\pi\mathbf{D}\mathbf{\tilde{y}}\mathbf{h}\mathbf{\mathcal{W}}$ グラディエントを利用した非線形逆散乱解析法の一種であ る. 非線形逆散乱解析法は, 開口合成法や回折波トモグラ フィーなどの線形アルゴリズムに比べ、繰返しを伴う大規 模な計算が必要となる. そのため, 実際の問題への適用に あたっては、線形アルゴリズムの適用が難しい場合にも利 用可能か、計算コストに見合う結果が得られるか、得られる ならばそれはどのようなケースにおいてかといったことを 調べておくことが重要である.そこで本研究では、TDTG 法の適切な利用方法について調べるために、シミュレーショ ン波形を使った欠陥形状再構成を行う.問題設定としては、 板材内部の欠陥形状の推定問題を考え、板厚は波長の数倍 程度であるとしておく. このような状況では, 板上下面か らの反射波と欠陥からの散乱波が混在し開口合成法等の適 用が難しい. そのため、TDTG 法の利点について検討する 良い例題を提供すると考えられる.

2. 問題設定

板内部の空洞欠陥を SH 波のリニアアレイセンサーを用 いて探傷することを考える (図1). アレイセンサーは板上 面のみに設置可能とする. アレイセンサーの素子数,素子 幅、ピッチはそれぞれ N, w, d, 空洞の内部領域および境界 を $D \ge \partial D$ によって表す. また, Ω_D は空洞とその境界部 分 D を除く板内部の領域を示すものとする. SH 波の送受 信はアレイセンサーの一部あるいは全部の素子を用いて行 なう.以下では、送信および受信に用いる素子群を、それぞ れ素子番号の集合 Tと Rで表す.今,空洞のおよその位置 は既知として、送信時には素子番号が $i \in T$ となる素子を 使って空洞近傍の適当な点 x_f に入射波を集束させる。こ のとき発生する散乱波を受信素群 R で観測した結果得ら れる時間波形 { $v_i(t; \Omega_D), j \in \mathcal{R}$ } を使って形状 ∂D を推定 する.以下,簡単のため二次元問題を考え,計測波形は差分 法による数値シミュレーション結果を用いる.数値シミュ レーションでは、送信素子を表面力に置き換えることでモ デル化し,受信素子は素子位置で計算される媒質表面の速 度を空間的に平均化して時間波形として出力する装置であ

東京工業大学大学院 正 員

東京工業大学大学院

īΕ

員

木本 和志

廣瀬 壮一

図-1 アレイ超音波探傷試験探傷試験による欠陥形状再構成.

るとした.

3. TDTG 法¹⁾

未知空洞 \overline{D} を含む領域を Ω_D , その推定を Ω とする. 両 者の' 近さ' すなわち推定精度を表すコスト関数 $j(\Omega)$ を次 式で定義する.

$$j(\Omega) := \frac{1}{2} \sum_{i \in \mathcal{R}} \int_0^T |v_i(t; \Omega_D) - v_i(t; \Omega)|^2 dt \qquad (1)$$

ここに $\{v_i(t; \Omega), i \in \mathcal{R}\}$ は Ω に対して計算される波形デー タを表す. TDTG 法では、コスト $j(\Omega)$ を最小化するよう に Ω を繰返し修正することで Ω_D の推定を行なう. 領域形 状の修正は、コストの値が小さくなるように領域内部の適 当な位置 x に半径 ϵ の小さな穴を開けることで行なう. 位 置 x の選定にはコスト関数の漸近展開式

$$j(\Omega_{\epsilon}) = j(\Omega) + f(\epsilon)g(x) + o(f(\epsilon)), \quad (\epsilon \to 0)$$
 (2)

が利用できる. ここに、 Ω_{ϵ} は穴開け後の領域を、 $f(\epsilon)$ は $f(\epsilon) \rightarrow 0, (\epsilon \rightarrow 0)$ なる非負の関数である.式 (2)のg(x)は topological gradient と呼ばれ、g(x) < 0となる位置 xに十分小さな穴を開ければ、コストの値が下がることを示している.2次元 SH 波の場合、g(x)は Ω に対する速度場の解v(x,t)と、その随伴問題の解 $\omega(x,t)$ により

$$g(\boldsymbol{x}) = -\int_0^T \{2\rho^{-1}\sigma_{3\beta}(v)\epsilon_{3\beta}(\omega) + v\omega\}dt \qquad (3)$$

と書くことができる [1]. 随伴問題の解 $\omega(x,t)$ は、物理的 には計測データと推定領域形状 Ω に対して計算されるシ ミュレーション波形の差

$$\delta v_i(t) := v_i(t, \Omega_D) - v_i(t, \Omega), \quad (i \in \mathcal{R})$$
(4)

を時間反転して加振項としたときに発生する波動場を意味 する.

4. 形状再構成結果

解析モデル 数値解析モデルを図に示す. 波動解析には差 分法を用い,無限板を模擬するために計算領域の左右両端 には PML(perfectly matched layer) 吸収領域²⁾を設けてい る. アレイ素子の数は N = 12, ピッチおよび素子幅は円形

Key Words: topological gradient, shape reconstruction, ultrasonic testing

^{〒 152-8552} 東京都目黒区大岡山 2-12-1 TEL 03-5734-3587 FAX 03-5734-3587 E-mail kimoto@cv.titech.ac.jp

図-2 数値解析モデル.

探傷手順 ここでは、以下の4ステップで散乱波の計測と 形状再構成を行う.

- 初期推定形状の取得:全素子(T = R = {1,...,12}) を使用して送受信を行う.入射波は直接空洞中心に集 束させ,観測時間は空洞から板底面を経ることなく受 信素子に戻ってくる直接散乱波のみが現れる時間に限 定する.
- 空洞側面の画像化: 左半分の素子 T = R = {1,...,6}
 を使って送受信を行う.入射波は直接空洞中心位置に 集束させ,欠陥左側面の画像化を行う.
- 空洞左下側の画像化:左半分の素子 T = R = {1,...,6}を使って送受信を行う.入射波は底面で
 1回反射させた後に空洞中心に集束させることにより, 欠陥左斜め下方向の情報を得る.
- 空洞上,下端部の画像化:右半分の素子 T = R = {7,...,12}を使って送受信を行なう.入射波は底面 で1回反射させた後に空洞中心に集束させ,y軸付近 の情報を得る.

形状再構成結果 図3に1~4の各ステップにおいて得ら れた形状再構成結果を示す.白の正方形セルで示された場 所が穴あけを行なった場所であり,白の実線は実際の境界 位置を示している.

空洞中心に集束する入射波は、空洞から見て左斜め上方 向から入射され、同じ方向に強い散乱波が発生する.その ため、入射方向を向く境界部分が最初の推定位置(穴あけ 位置)として現れている.

Step2 はこの結果をもとに左半分の素子 $T = R = {1,...6}$ を使って得られた結果である.計測時間を適度に

図-3 シミュレーション波形を用いた円形空洞の形状再構成結果. 長くとることで,欠陥側面および板底面を経由して戻って くる散乱波を受信することができるため,空洞左側面の上 半分が現れている.

Step3 では、板底面で1回反射させた後に入射波を空洞 中心に集束させた結果、空洞左側面の下半分が初めに再構 成され、続いて左斜め下の部分が現れてくる.ただし、左斜 め下方向は弱い散乱波しか計測されていないために、推定 精度が若干悪く、実際の境界位置よりやや内部にずれた位 置に穴が開けれらている.

Step4 では空洞下部の情報を得ることを期待し、入射波 を底面で1回反射させた後に空洞中心に集束させたが、図 3 に示されるように上部のみが再構成されるという結果と なった.がやや広いことを確認している.空洞下部が再構 成されない理由は、上端部からの散乱波に比べて下部から は弱い散乱波しか発生していないためと考えられる.従っ て、空洞下端部の再構成を行なうためには、適当な時間窓 で切り出した波形を用いるなどの工夫が必要になると思わ れる.

5. まとめ

数値シミュレーションデータをつかい, TDTG 法により 板内部に存在する欠陥の形状再構成を行った.その結果, アレイセンサーを板上面, 欠陥から見て左側のみに設置し た場合にも, 欠陥境界のうちほぼ半周近くについて形状推 定が可能であることが分かった.今後は, 同様な検討を計 測波形についても行なう予定である.

参考文献

- N.Dominguez, V.Gibiat, Y.Esquerre: Time domain topological gradient and time reversal analolgy -an inverse method for ultrasonic target detection, Wave Motion Vol.42, pp.31-52(2005).
- F.Collino, C. Tsogka: Application of the PML ansorbing layer model to the linear elastodynamic problem in anisotropic heteregeneous media, INRIA report, No. 3471(1998).