デジタル画像相関法を用いた矩形張力膜のリンクル計測

長崎大学大学院	学生会員	〇森下	喬	長崎大学工学部	正会員	松田	浩
長崎大学大学院	学生会員	古屋	瞬	長崎大学工学部	非会員	山下	務

1. はじめに

膜材は、張力を導入することにより、構造系を形成 することができる.しかし、過剰な張力の導入はリン クル(しわ)発生の原因となる.膜面に生じたリンク ルは、膜構造物の美観や力学特性に影響を与える.膜 構造物にとってリンクルの挙動を把握することは重要 な問題となっている.しかし、膜材は変形能が大きく 非線形性が強いため、ひずみゲージによる正確なリン クルの計測は困難であった.

そこで、3次元デジタル画像相関法に注目した.この 計測手法は、特殊な装置が必要でなく、カメラとパソ コンがあれば十分であり、しかも振動に強く、大変形 や大ひずみにも適用できるなどの特長を有している. また、2台のカメラを用いているので、2次元面内変位 のみならず 3次元面外変位計測も可能である.本研究 ではデジタル画像相関法を用いて、矩形張力膜のリン

クル形状と最小主ひずみ値に注目して検討を行った.

2. デジタル画像相関法の基本原理

変形前のデジタル画像において,任意の点(一画素) を中心とした N×N ピクセルの任意領域(サブセット) を指定する.(図 1(a))カメラを固定したままで測定物 に変位を与えると,変形後のデジタル画像でのサブセ ットの位置は変化する.変形前後のサブセットのデジ タル情報を比較し,変形後のサブセットの位置を探し 決定する.このサブセットの中心の移動量が計測点の 変形量および変形方向である.(図 1(b))

また,図2のように2台のカメラを用いて計測するこ とにより,3次元の変形量,変形方向および形状を求め ることができる.また,ひずみは移動画素量からひず みゲージ法を用いて算出する.

図2 3次元変形計測方法

3. ひずみ計測適用検証試験

デジタル画像相関法のひずみ測定への適用性を確認 するために、アルミニウム合金の引張試験を行い、ひ ずみゲージとの比較を行った.図3に試験結果のグラ フを示す.試験結果より、デジタル画像相関法はひず みゲージと同等の精度での計測が可能である.

4. 矩形張力膜のリンクル計測

4.1 計測概要

矩形張力膜の一軸引張試験を行い,デジタル画像相 関法によりリンクル形状と最小主ひずみを計測して, 関係性について検討を行った.試験片には,厚さ 50µ mのポリエステルフィルム(ルミラー)を用い,アス ペクト比1,2,3の3種類の試験片を作製した.

キーワード:張力膜 リンクル 最小主ひずみ デジタル画像相関法 光学的全視野計測 〒852-8521 長崎県長崎市文教町1番14号 TEL:095-819-2590 FAX:095-819-2590 計測で見られたリンクル現象を図4に示す.図5に試 験片形状を示し、a×b(mm)の計測範囲とした.また、試 験片の寸法および計測範囲を表1に示す.なお、計測 した最小主ひずみの値は、図5に示す試験片中央の a×c(mm)の計測領域の平均値を用いた.

図4 リンクル現象 図5 計測範囲と試験片形状

試驗片寸法 表 1

試験片	アスペクト比	寸法(㎜)	計測範囲(mm)			
			а	b	с	
А	1	150×150	100	100	2	
В	2	150×300	130	200	2	
С	3	150×450	80	200	2	

4.2 計測結果

リンクルの発生が無かった試験片 A とリンクル発生 が確認された試験片 B における最小主ひずみに注目し た計測結果を図6,7に示す.試験片Aでは、リンクル の発生は確認されず、荷重が増加するに従って、ひず みは増加していくがリンクル発生箇所に縞状のひずみ の集中は見られなかった. 試験片 B では、リンクルの 発生が確認することができ、リンクル発生箇所にリン クルの形状に沿ったひずみの集中が明瞭に確認される. これらの結果より、リンクル発生を確認することがで き, デジタル画像相関法において膜材の全視野計測が 可能であることがわかった.

また、リンクル形状と最小主ひずみ分布に関係性を 明確にするため、リンクルの発生が確認された試験片B の 600N 載荷時における中央断面での面外変位と最小 主ひずみの比較を行い、図8に示す.中央断面におけ る面外変位と最小主ひずみ分布が相似関係になってい ることがわかる.また、両者の極小点、極大点がリン クルの形状に沿って現れていることがわかる.この結 果, リンクル形状と最小主ひずみの間には, 関係性が あることがわかった.

図8 最小主ひずみと面外変位の比較(試験片 B)

5. まとめ

本研究で得られた知見を以下に示す.

- (1) デジタル画像相関法により, 膜材に対しての全視 野変位・ひずみ計測が可能であることを確認できた. また、膜面全体の3次元形状を計測できるため、リ ンクル発生箇所の特定が可能であった。
- (2) 同一時間での最小主ひずみと面外変位を比較す ることができ、リンクルの発生において最小主ひず みと面外変位との関連性を見出すことができた.

参考文献

・梅崎栄作:デジタル画像相関法,実験力学, Journal of JSEM Vol.3 No.2, pp59-62, 日本実験力学会, 2003.