金属のナノインデンテーション試験の 大変形弾塑性シミュレーション

東北大学	学生会員	小橋 宏昭
東北大学	正会員	池田 清宏
東北大学	正会員	山川 優樹
東北大学	非会員	小池 淳一
東北大学	非会員	照井 賢一郎

1. はじめに

半導体・MEMS デバイスの微細化・集積化の進展 に伴って,力学的信頼性への要求は益々高まってい るにも関わらず,デバイス材料の力学挙動の計測技 術は発展途上であり,未解明な点が多い.そのため, デバイスの設計では不確定かつ過度のマージンが設 けられているのが現状であり,それがデバイス微細 化へのネックとなっている.一般にデバイスは数種 の材料から構成されており,隣接材料間で相互に変 形拘束の影響を及ぼしあうため,実際の製造プロセ ス及び使用時における力学挙動は複雑であり,バル ク材料の特性とは大きく異なる.現状の計測技術に よる実験的アプローチだけでは十分な解明は望めず, 数値解析の援用など,従来とは異なる手法によるア プローチが必要である.

一方,大変形弾塑性FEMは土木・建築・自動車・パ ソコン等の分野において,高精度な実現象の再現を 通じて力学挙動の解明に大いに活用されている.本 研究では,半導体・MEMSデバイス材料の力学挙動 の解明に対するFEM解析の必要性に着目し,ナノ材 料の物性の測定に用いられるナノインデンテーショ ン試験の数値シミュレーションを行い,実際の使用状 態における半導体デバイスの力学挙動の評価に対す る大変形弾塑性FEMの適用可能性を検討する. 2. Cu薄膜のナノインデンテーション試験

東北大学工学部小池研究室で行われたナノインデ ンテーション試験の概要を図-1(a) に示す.試験には Triboindenter (Hysitron 製)の cube corner タイプの ダイアモンド圧子が用いられた.この圧子の基本形 状は先端角度が 90°の三角錐,曲率半径 80nmの球 状の最先端部からなっている.

図-1(b) に典型的なナノインデンテーション試験 結果の模式図を示す. P_{max} は最大荷重, h_c は除荷後 の押し込み深さである.Sは最大荷重 P_{max} における 除荷開始時の接線勾配を表している.ナノインデン テーション試験では,除荷初期の変形が弾性変形で あるという仮定に基づき,試験により得られた P_{max} , h_c ,及びSを用いることで弾性率,降伏応力を求め

図-1 ナノインデンテーション試験

ている¹⁾.このとき,除荷初期の弾性変形中は圧子接触面積が一定であること,及び圧子のまわりの試料 表面が平坦であり,盛り上がりや沈み込みがないこ とを仮定して弾性率を求めている²⁾.

 FEM によるナノインデンテーション試験 のシミュレーション

有限変形等方硬化 von Mises モデルによる弾塑性有 限変形解析を行い, Cu 薄膜のナノインデンテーショ ン試験をシミュレーションする.数値解析には,山 川らが開発した有限変形弾塑性 FEM コード³⁾を用い た.なお,解析結果の評価に際しては,主に実験より 観測された荷重-ひずみ関係に着目する.

(1) 解析モデル

図-3(a) に示す二次元軸対称モデルに対して解析 を行った.要素は4節点一次要素を用いた.図-3(b) に示す小池研究室による実験結果にもとづいて2章 で述べた方法で測定した物性値,文献⁴⁾による押し込 み深さ150 nm の実験で測定された Cu の各結晶方位 の物性値及び一般的な Cu に対するバルク値をもとに 材料モデルを決定した.3種類の材料モデルの材料定 数を表-1 に,要素特性を図-2 に示す.等方塑性硬 化関数は式(1)の通りである.ここで ξ , $\hat{\tau}_{y0}$, $\hat{\varepsilon}_{y0}$ は それぞれ,相当塑性ひずみ,初期降伏応力,降伏ひ ずみである.n,Hは塑性硬化に関するパラメータで ある.

$$\hat{\tau} = -\left|H\xi + \hat{\tau}_{y0}\left(1 + \xi/\hat{\varepsilon}_{y0}\right)^n - \hat{\tau}_{y0}\right| \qquad (1)$$

Key Words: 大変形弾塑性 FEM , Cu 薄膜 , ナノインデンテーション 〒980-8579 宮城県仙台市青葉区荒巻字青葉 06

(2) 荷重--変位関係のシミュレーション

実験結果と3種類のモデルの解析結果の比較を図 --3(b) に示す.荷重-変位関係では,実験において押 し込み深さ 8 nm で pop-in¹ を生じているが, それよ りも浅い領域では , (100) 結晶方位モデル , バルクモ デル共に実験値と良好な一致を示しており, pop-in が収まった後の領域についても,実験値と(100)結晶 方位モデルとの間には似通った傾向が見られる.-方,今回に実験より得られた物性値を用いたモデル は,明らかに実験値と異なる挙動を示しており,この ことより,インデンテーション試験で正確な物性値を 得るためには押し込み深さを十分にとる必要がある といえる.なお,実験において除荷終了付近で荷重-変位関係の巻き込みがみられるが, FEM 解析ではこ れを再現することができなかった.また図-3(c)に示 すように,圧子押し込み部分の縁にひずみ及び応力 の集中が見られる.実試験ではこのような箇所を起 点に原子配列の転位等が発生する可能性が高いと考 えられる.

(3) 圧子形状の影響の評価

圧子形状の変化が解析結果に与える影響を調べた. 解析結果を図-4に示す.圧子形状が荷重-変位曲線の 立ち上がり方に与える影響は非常に大きく,このこと より物性値測定の際の圧子形状を正確に把握するこ との重要性をうかがうことができ,また,半径80nm の球であるという圧子の公称形状に対し,ある程度 の信頼性も確認できた.

4. 結論

弾塑性有限変形解析プログラムを用いた本研究に より,ナノインデンテーション試験における荷重-変 位関係を良好に近似することができ,バルク Cu 値, 及び実験から求められた物性値にある程度の信頼性 を確認することができた.これより,ナノスケール分 野への弾塑性有限変形解析プログラムの適用可能性 の一端を示すことができた.

今後,より高精度な挙動予測を実現するためには, デバイス製造プロセスで発生する残留応力・残留ひ ずみの影響の考慮,ナノスクラッチ(引っ掻き)試験 の解析による薄膜の剥離強度の評価,Pop-inの発生 原因の特定及び再現のための,せん断帯の形成や原 子配列の転移を考慮した解析手法の検討等が必要で ある.

参考文献

- W.C. Oliver and G.M. Pharr: J. Mater. Res., 19, 2004.
- 2) 社団法人日本金属学会:金属学会会報「まてりあ」, 1996.

表-1 材料定数

	E(GPa)	$\hat{\tau}_{y0}(\text{GPa})$	$\hat{\varepsilon}_{y0}$	n	H(MPa)
実験測定値	133.2	0.885	0.0066	0.075	0.23
(100) 方位 ⁴⁾	123.8	0.468	0.0038	0.105	0.26
バルク	128.9	0.300	0.0023	0.120	0.30

図-3 標準モデルの解析

図-4 圧子形状の影響

- 3) 山川 優樹 他: 圧縮場における弾塑性体の分岐解析とパ スジャンプ挙動. 土木学会論文集, 701/III-58, 73-86, 2002.
- 4) 照井 賢一郎: ナノインデンテーション法による Cu 薄 膜の強度評価. 東北大学材料物性学科卒業論文, 2005.

¹ ある時点において急速に鉛直方向変位が進展する現象.明 確な発生機構は判明していない.