鋼部材を接合するための接着剤の適用に関する基礎的研究

宇都宮大学大学院 学生員 齋藤誠 ,正会員 中島章典 宇都宮大学 小高暁 ,トピー工業株式会社 大江浩一

1. はじめに

接着剤を用いた鋼部材の接合には,面接合による接合 部の応力分散,繰り返し載荷時における接着剤の低い弾 性係数による振動減衰など,ボルト接合や溶接にはない 利点が期待される.しかし一方で,被着体の表面状態, 接着や硬化時の温度環境などの施工条件による接合強度 のばらつき,接合部の破壊性状,耐久性や耐熱性が不明 確などという問題点により,接合方法としての鋼部材の 接着接合は未だ確立されてない.

本研究では,見込まれる接着強度にばらつきを与える 様々な要因,および接合部の破壊性状を実験により考査 し,接着剤の性能の再現性を確認したものである.

2. 実験概要

本研究では,図-1に示す寸法,形状のダブルラッ プシアー試験体を用いて,引張荷重による2面せん断 試験を行った.母材,添接材に使用した鋼材はともに SS400である.接着面はショットブラスト(スチール ショット,粒径約0.8mm,硬度HRC 40-50,ショット 初速73m/s)後,アセトンで脱脂した.接着剤は2液 性構造用接着剤であるエポキシ系接着剤,およびアクリ ル系接着剤の2種類とした.前者は主剤および硬化剤を 重量比100:80,後者は専用のアプリケーターを用いて 混合し,塗布を行い,接着後に万力で圧締した.接着作 業は,エポキシ系接着剤,アクリル系接着剤それぞれの 可使時間である約90分,3分以内で行った.

載荷方法はアムスラー型万能試験機(能力2MN)を 用いて,荷重レンジ200kN,室温下で載荷した.

計測項目は,母材と添接材の軸方向相対ずれ変位,添 接材端部の面外方向の変位,および添接材表面のひずみ で,それぞれ図-2に示すクリップ型変位計,高感度変 位計,およびひずみゲージで計測した.ひずみゲージの 貼付位置は,既往の研究¹⁾で与えられた接着部でのせん 断応力分布を参考にし,その最大値付近とした.

表-1に,各試験体の使用接着剤,ラップ長,硬化温 度,硬化期間,および試験体数を示す.ここで,硬化温 度は各試験体において熱電対で計測した値の平均値であ る.硬化温度はエポキシ系接着剤,アクリル系接着剤と もに外気温と2種類の温室温度の計3段階で,低温か ら順にL,M,Hと略記する.試験体名は,例えば使 用接着剤がエポキシ系接着剤,ラップ長が50mm,養 生温度がLの試験体をE50Lと表記する.

3. 実験結果および考察

(1) 接着強度とラップ長の関係

図-3に E50H, E75H, E100Hの最大荷重, せん断 強度 - ラップ長関係を示す.エポキシ系接着剤におい

図-2 計測器設置状況

て、ラップ長が長くなっても最大荷重(図中)は比例 して増大せず、接着面積で除したせん断強度(図中) はむしろ減少した.この強度低下の原因は図-2に示す 接着剤の応力分布によるもので、ラップ長が長くなるに つれ、接着面端部($y=\pm L$, 0)の接着剤の応力負担が 増大し、接着面中央部($y=\pm L/2$)での応力負担が減 少することにある.つまり、ラップ長を長くすれば、接 着面積は比例的に増加するが、最大荷重は必ずしも比例 的に増大せず、接着面積で除したせん断強度、厳密に言 えば見かけのせん断強度は減少すると考えられる、接着 面端部の応力集中は、本実験で得たひずみの大小関係か らも確かめられた.

(2) 接着強度と硬化温度の関係

図-4にE75H,E75M,E75L,A50H,A50M, A50Lの最大荷重-硬化温度関係を示す.また,接着剤 メーカーが提示するエポキシ系接着剤,およびアクリ ル系接着剤の室温(23)硬化時の参考強度をそれぞれ 破線,実線で示した.アクリル系接着剤は参考強度の 150-175%の接着強度を発現した.一方,エポキシ系接 着剤は,接着剤の硬化が保証される最低硬化温度を下 回っているE75Lを除き,参考値の90-110%の強度発 現になった.図-5にE75H,E75M,E75Lの硬化温 度および硬化期間を示す.

本研究で使用したエポキシ系接着剤の完全硬化期間は 5日間であり,たとえ最低硬化温度20 以下のために

Key Words: 接着剤,接着接合,鋼部材,せん断強度,2面せん断試験,接着条件
〒 321-8585 宇都宮市陽東 7-1-2 宇都宮大学大学院工学研究科情報制御システム科学専攻 Tel.028-689-6208 Fax.028-689-6208

使用接着剤	エポキシ系接着剤					アクリル系接着剤					
試験体名	E50H	E75H	E75M	E75L	E100H	A50H	A50M	A50L	A75H	A75L	A100H
ラップ長 (mm)	50		75		100	50			75		100
養生方法	温室		恒温室	外気	温室	温室	温室	外気	温室	外気	温室
硬化温度()	33.6		20.0	7.0	33.6	28.1	14.0	2.0	28.1	5.0	28.1
硬化期間(日間)	6		7	6		3	7		3		
試験体数	3	3	3	3	3	3	3	3	3	3	3

表-1 試験体および接着条件

硬化反応が進行しない期間があっても,硬化期間中に5 日間を20 以上で確保すれば,接着剤は完全に硬化す る.したがって,E75Hの強度低下の要因は硬化不足 ではなく,接着時の温度14 から最低硬化温度の20 間の硬化反応が低下し,その状態が維持されている間に 湿度などの影響を受けたためと考えられる.アクリル系 接着剤は,硬化温度の上昇とともに最大荷重は増大する 傾向が見られ,接着強度の硬化温度への依存性はエポキ シ系接着剤より小さい.このことにより,アクリル系接 着剤では,低温時に接着作業を行っても,十分な接着強 度が得られると言える.

(3) 破壊形式

A75H,A100Hは鋼材が試験体の破壊より先に降伏 してしまったが,その他の試験体では,破壊荷重に達す ると添接材が吹き飛ぶといった激しい破壊が確認され た.破壊面において,アクリル系接着剤の試験体破壊面 は,接着層内の破壊である凝集破壊がほとんどであった のに対し,エポキシ系接着剤は,全ての試験体において 接着剤と被着材である鋼材の界面で破壊する界面破壊, もしくは両方を含む混合破壊が確認された.接着されて いることを保証するためにも,破壊形式としては凝集破 壊が好ましい.エポキシ系接着剤およびアクリル系接着 剤の表面処理,圧締などの接着条件は同程度であり,ア クリル系接着剤が油面への接着性に優れていることか ら,エポキシ系接着剤において界面破壊が顕著に確認さ れた要因としては,接着面に残留した油分による接着力 の低下が考えられる.

(4) 接着強度と接着層厚の関係

接着層厚 t を事前に設定して試験体を作成するのは困難であるため,本研究では試験体作成後に,接着部の層厚から母材および添接材の厚さの差をとり,接着層厚を 測定した.その結果,エポキシ系接着剤で0.0131mm から 0.116mm, アクリル系接着剤で 0.0246mm から 0.121mm の接着層厚が測定された.既往の研究³⁾によ リ,接着層厚が薄くなるほど,得られる接着強度は増加 することが確認されている.しかし本実験では,両接着 剤ともに,この範囲内で接着層が薄くなるほど,強度が 増加するという顕著な傾向は確認できなかった.

4. まとめ

本研究では,鋼部材同士を接着接合したダブルラップ シアー試験体を用いて,引張荷重による2面せん断試験 を行った.その結果,以下のことが確認された.

- 試験体の最大荷重はラップ長に対し必ずしも比例 的に増加せず,見かけのせん断強度は減少する.
- アクリル系接着剤はエポキシ系接着剤に比べ,最 大荷重に及ぼす硬化温度の影響は小さく,硬化温 度の上昇と共に最大荷重は増加する.
- 試験体の破壊は接合部が吹き飛ぶほど激しく、その破壊面には、アクリル系接着剤で凝集破壊、エポキシ系接着剤で凝集破壊、界面破壊、およびその混合破壊が見られた。

謝辞:本研究の一部は2005年度鋼構造研究・教育助成 金を受けて行ったものであり,ここに謝意を表します. 参考文献

- Madhukar Vable, JaiHind Reddy Maddi : Boundary element analysis of adhesively bonded joints, International Journal of Adhesion & Adhesives, 26 pp.133-144, 2006.
- M. Quaresimin, M. Ricotta : Fatigue behaviour and damage evolution of single lap bonded joints in composite material, Composite Science and Tecnology, 66, pp176-187, 2006.
- Abdelaziz A. Taib, Rachid Boukhili, Said Achiou, Sebastien Gordon, Hychem Boukehili : Bonded joints with ... International Journal of Adhesion & Adhesives, 26 pp.226-236, 2006.