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1. Introduction 

Current available methods for structural analysis 
cannot follow the failure behavior accurately. Widely used 
Finite Element Method (FEM) solves the boundary value 
problem (BVP) precisely. However, it cannot express 
displacement discontinuity as it uses smooth overlapping 
shape functions. On the other hand, Distinct Element 
Method (DEM) can follow the failure behavior. However, 
the spring constants can not be rigorously determined. 
FEM-β1), a new method for numerical simulation for 
failure behavior of continuum has been developed to 
cover the above mentioned problems. FEM-β provides a 
rigorous block-spring model for deformable body with 
easy treatment of failure. Here, an extension of FEM-β to 
perform elasto-plastic analysis is achieved. 
 
2. FEM-β 

The particle discretization is applied to a BVP of 
two dimensional homogeneous elastic body V. When the 
displacement iu is prescribed on the boundary ∂V, The 
BVP for displacement ui is posed as 

, 0  in ,             on .ijkl k li i ic u V u u V= = ∂  (1)
where cijkl is the elasticity tensor. 

The domain is decomposed into a set of Voronoi 
blocks. The non-overlapping characteristic functions1) of 
the Voronoi blocks, see Fig. 1, and the Delaunay triangles, 
respectively, are used to discretize the displacement and 
stress functions as follows 
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where: αφ is the characteristic function on αth Voronoi 
block Ωα and γβ is the characteristic function on βth 
Delaunay triangle ∆β. 

The strain cannot be computed from the discretized 
displacement in Eq. (2) since the derivative of αφ becomes 
a delta function along the block boundaries ∂Ωα. FEM-β 
computes the average strain to evaluate the stress over the 
triangular domain. The contribution of the displacement 
u1 of the point x1 to the average strain over ∆123, Fig. 2, 
can be computed1) as  
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Similarly, the contributions of u2 and u3 are computed and 
a complete matrix [B]3x6 is obtained. Then the average 
stress is computed as [ ][ ]c ε over ∆123 where [c] is the 
elasticity matrix. Eq. (4) shows that the average strain of 

FEM-β is equal to the uniform strain of ordinary FEM 
with triangular elements. Hence, both methods produce 
the same stiffness matrix. This means that FEM-β has the 
same accuracy of ordinary FEM in computing the 
displacements, strains and stresses while the displacement 
field is discretized with non-overlapping characteristics 
functions. 
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Fig. 2 Triangle 
domain ∆123 
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of blocks 
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Fig. 3 Six springs 
connect Ω1 and Ω2

 

Straightforward extension of FEM-β to solve 
problems with material nonlinearity is achieved. Steel 
plasticity behavior is considered. Von Mises, the most 
popular yield criterion for steel, is employed to determine 
the stress level at which the plastic deformation begins. As 
the mild steel exhibits plastic flow under constant stress, a 
simple elasto-prefect plastic stress-strain relationship is 
adopted. After computing the average strain ijε , the stress 
calculation in every triangular domain is done via 
Backward-Euler algorithm, the most accurate return 
mapping algorithm2). Stress is computed3) as 

F S pσ = σ + c(∆ε -∆ε ) over ∆123 where  is the starting 
stress, is the final stress on the yield surface, 

Sσ

Fσ p∆ε is the 
average plastic strain and c is the elasticity matrix. In this 
sense, the plasticity is not localized within the triangular 
domain. To perform more realistic elasto-plastic analysis, 
a better algorithm is required. The expected algorithm 
should allow some parts of the triangular domain to go to 
the plastic zone while the others remain in the elastic zone.  
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3. Failure Analysis: 

The main advantage of FEM-β is the high efficiency 
in solving failure problems. Using FEM-β, the particle 
discretization scheme that uses non-overlapping 
characteristic functions provides a rigid-body-spring 
model which is equivalent to continuum model. The 
global stiffness matrix represents springs which connect 
the rigid bodies, see Fig. 3. The matrix components, 
which are rigorously determined in terms of material 
properties, give the springs’ constants. In every triangular 
domain, the material strength is used to check failure of 
springs. The springs to be broken can be picked up1) 
according the direction of the major principal stress. The 
pervious treatment is not justified yet. A more realistic 
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treatment is still needed. 
The procedure of failure is described in our program 

as follows. For all triangular domains, the major principal 
stress is checked during each iteration of each load 
increment in the nonlinear solution. If the major principal 
stress in any triangular domain reaches the given material 
strength, the corresponding springs are broken. The 
contributions of the broken springs to the components of 
the global stiffness matrix are reduced to zero. These 
reductions generate relatively high residual forces in 
additional to the residual forces of the nonlinear iterations. 
All these forces must be redistributed in the next iteration 
in a similar way to the conventional nonlinear solution. 
The iterations continue until the residual forces converge 
to a given tolerance. Then the next load increment is 
applied. It should be emphasized that the load increments 
should be small enough to follow the failure behavior. The 
program checks the global failure after every spring 
failure. The program stops if the global failure is achieved. 
If not, the iterations process continues and the next load 
increments are applied.  This preliminary procedure 
enables some springs to go to the plastic region and some 
to reach the failure status while the others remain in the 
elastic region. Moreover, the spring is broken when it just 
reaches the failure status. Hence, no springs sit beyond the 
failure criterion. However, the spring failure is checked 
inside the iteration loop where the solution is not 
converged yet. Further development is still needed to 
ensure the breakage of the spring after the convergence of 
the nonlinear solution. The spring should be have the 
option to reconnected again during the iterations. 

 
4. Failure Simulation 

Failure analysis of an isotropic elasto-plastic steel 
plate under uniaxial tension in the vertical direction is 
examined. The plate is square (2x2 m) and it has a circular 
hole (Diameter=0.2 m) in its center. A plane strain 
condition is assumed. Young’s modulus, Poisson ratio and 
yield stress are set as E=2100 t/cm2, υ=0.3 and σy=2.4 
t/cm2. The maximum tensile stress is given as 3.6 t/cm2 to 
represent the material strength. A total 0.20% uniform 
elongation is applied in fine increments. A tolerance of 

 is given to check the convergence of the nonlinear 
solution. Snapshots of the distribution of the equivalent 
Von Mises stress are shown in Fig. 4a. White color 
indicates the plastic triangular domains while black color 
indicates the elastic and unloaded triangular domains. As 
expected, some triangular domains go to the plastic region 
with increase of loading. Springs are broken when they 
reach the failure status. Breakage of springs causes some 
triangular domains to unload to the elastic region as a new 
free surface is being created. Snapshots of the failure 
pattern are shown in Fig. 4b. As the load increases, some 
springs are broken. This process continues until the global 
failure is achieved and the plate is broken into two parts. 
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Conclusions 

In this paper, we present the preliminary 
investigation for extension of FEM-β to perform elasto-
plastic analysis of steel structures. Further development to 

localize the plasticity within the triangular domain is still 
required. A failure procedure is proposed. Improvement to 
allow reconnection of the springs during the iterations  
should be developed. A failure simulation of an elasto-
plastic steel plate under uniaxial tension is presented. The 
results show that FEM-β can handle failure initiation and 
propagation until a global failure is achieved. 
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Fig. 4a Equivalent Von 
Mises stress distribution 

Fig. 4b Failure pattern 

of an elasto-plastic steel plate under uniaxial tension in the 
vertical direction 
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