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1 Introduction

Recently, Fukui[1] has presented a fast multipole mo-
ment boundary element method for 2D orthotropic ma-
terials. Numerical examples show the efficiency of FM-
BIEM in solving large-scale problem for orthotropic ma-
terials. On the other hand, it is well known that micro-
cracks in brittle materials often lead to macrocrack ini-
tiation and induce progressive damage. So, the study on
the crack problems is of significant importance. For 2D
isotropic elastic materials, Fukui[2] has presented a fast
multipole boundary element method for the multi-crack
problems. The objective of this paper is to study the ap-
plications of FM-BIEM for large-scale crack problems in
orthotropic materials. This paper could be regarded as
an extension of Fukui’s work[2].

2 Basic Equations and Crack Problem

In orthotropic elastic materials, the strain-
displacement relation, the equlibrium equation and
the constitutive equation are given as [3]:
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where €;;, u;, 0;; and X; are strain, displacement, stress
and body force, respectively. cfjl and sff are the elastic
and compliance tensors, respectively.

Based on the complex potential functions ¢ and x [3],
the displacement and the stress fields of orthotropic ma-

terials can be expressed as
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where zo, = z + 7,2 (o = 1,2). 7, is the characteristic
root of the characteristic equation. §,0p, are parameters
associated with the material constants(1].

As an initial attempt, only the infinite, multi-crack
problems are considered in this paper, which can be de-

scribed as
Cf}uk,lj +X;=0 (in domain B)

(on 51752,...,51\4) (7)

S; = O'ijnj =0
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where s; is the traction vector on the boundaries.
S, 59, ..., Sy are the crack face boundaries.

3 Boundary Element Method
3.1 Boundary Integral Equations

Assume that the body force components are ignored
and the boundaries under consideration are smooth.
Based on Somigliana formula, the traction solutions to
the crack problem (7) can be expressed as

0= njo’, ZPf/ Uy (. 9)[uws) () dS,  (8)

where ¢?; is the initial stress components. n; is the unit

normal outward vector. [u;] = uf —u

ing displacement, and

Uij(x,y) = T3}, Skj(z, y) 9)

where §j; is the associated fundamental solution, which
can be expressed in terms of complex functions [1].

u,; is the crack open-

3.2 Discretization of the BIEs

Based on the collocation method, Eq.(8) can be dis-
cretized into the following system:
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where s;" = n;oj;(z), and

Dl (x) = / Uss (2, y) f1(y) ds, (11)
Er

where fr(y) is the basic function. For the crcak face
boundaries, the constant density element is adopted in
which fr(y) = 1. The influence functions of the constant
density element have been obtained by Fukui [1]. How-
ever, as shown in Fig.1, the displacement components
near the crack tip are in proportion to /s [4]where s is
the distance from the crack tip, so we define the basic
function as fr(x) = 1/2s/a. Thus, we have

Df;(x) :/ Uij(z,y)\/2s/ads, (12)
Er

The hyper-singular kernel U;;(x, y) is the traction field
at « due to the double layer kernel, which can be defined
by

T(x,y) =T +iTy = Uj(z,y)U; + iUszj(x, y)U;

= 5 (057 + 2% (13)
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Fig.1 Crack-tip element

where v* is a direction vector. Then, without going into
details, the influence function of D;;(x,y) due to a crack-
tip element can be expressed as
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where V2 = 1v® — ~,U%, and ky(z) is defined by
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4 Fast Multipole Method

In this paper, Fast Multipole Method (FMM) is
adopted to reduce the computational complexity for the
multi-crack problems. To implement this fast method,
the multipole expansion, the local expansion and the
translation formulae are necessary, which were discussed
in detail by Fukui[l] and omitted here. In this section
only the multipole moment due to the crack-tip element
is discussed.
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Fig.2 Crack tip element and multipole point

Consider a crack tip element [0,b], as shown in
Fig.2. Origin O is at the crack tip. Then we have
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Vs/a = /Ca/bs. By integrating the multipole coeffi-

cients through the crack-tip element, i.e.,

M;?:/ MS(Cl)\/Zs/adsy
E
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we can get the multipole moments of crack tip element
due to the double layer potential kernel as
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where 7, = € +7,e7%. The components V and W can
be found in Fukui’s work[1].

5 Conclusions

Based on the complex potential functions, a hyper-
singular boundary integral equation for crack problems
has been presented in which a crack tip element is spe-
cially introduced to improve the accuracy of the crack
solution. FMM (fast multipole method) is adopted to re-
duce the computational complexity of the boundary in-
tegral equations, for which the multipole moment of the
influence functions of the crack-tip element has been pre-
sented. Then, with the aid of the work by Fukui[l], the
hyper-singular boundary integral equation can be solved
numerically in connection with FMM, i.e., a fast multi-
pole boundary element method for large-scale crack prob-
lems in 2D orthotropic elastostatic materials is presented.
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