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1. Introduction 
 Cylindrical shells are widely used in many engineering fields for conveying liquid. Some of them are laid on the 
foundation. Free vibrations of cylindrical shells with a non-axisymmetric elastic bed have been investigated by Amabili et 
al.[1] based on the Rayleigh-Ritz method. Complicating effects due to contained invicid liquid, intermediate constraints, and 
added mass are considered later on by Amabili et al.[2]. Lakis and Sinno [3] have developed the combined formulation of 
finite element and classical shell theory which is applied for free vibration of empty and liquid filled shells. This paper presents 
the free vibration characteristics of cylindrical shells conveying fluid on elastic foundations. Similar method as described by 
Gunawan et al.[4] is adopted. Numerical results are presented to give better pictures of the dynamic characteristics of the 
problem. 
2. Model and Formulation 
 The shell considered is an isotropic thin elastic shell based on the Sanders theory with Young’s modulus E, Poisson’s ratio 
υ, mass density ρS, radius of the middle surface R, thickness h, and length L. The foundation may be represented by continuous 
elastic (axial, circumferential, radial, and rotational) springs on a limited arc which corresponds to an angle ϕ1+ϕ2. Geometry 
of the structure and generalized model with reference direction are shown in Fig.1, where Ku, Kv, Kw, and Kβ denote the 
associated directional spring coefficients. 
 The displacements of a point on the middle surface in axial, circumferential, and radial direction are indicated by u, v, and 
w, respectively and are expressed as follows: 
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Superscripts S and U refer to symmetrical and asymmetrical systems. Typical circumferential wave is denoted by m in Eq.1. 
The shell is filled fully with the fluid and the fluid is assumed to be invicid, incompressible, and irrotational so that the flow 
can be described by a velocity potential Φ which satisfies the Laplace equation. The hydrodynamic pressure acting on the wall 
of the shell is determined from the linearized Bernoulli equation and is given as follows: L ( / / )p t U xρ Φ Φ= − ∂ ∂ + ∂ ∂ , where ρL 
and U are mass density and axial velocity of the fluid, respectively. The motion of the shell and fluid is coupled by the radial 
velocities on the interface between shell and fluid. The velocity potential function may be expressed as a summation of the 
following function S U

mj mj mjΦ Φ Φ= +  over the whole ranges of m and j. By taking into account the mentioned assumptions, one 
may found the explicit form of Φ as a function of w. 
 By minimization of the total potential energy of the vibrating system and using the finite element method, the following 
governing equation can be obtained: 

(2) 
where MS and KS are mass and stiffness matrices of the shell; ML, CL, and KL are mass, damping, and stiffness matrices of the 
flowing fluid; and KF is the stiffness matrix of the foundation. The first, second, and third terms in Eq.2 are denoted by M, C, 
and K, respectively. Eq.2 is a quadratic eigenvalue problem and can be solved by a linearization process. Note that, this 
linearization is not unique. 
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Fig. 1. Geometry and discretization of the problem. 
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(3) 

where Λ = iω. For convenient, a non-dimensionalized frequency parameter 2
S (1 )L EΩ ω ρ υ= − is used. 

3. Numerical Results 
 Based on the numerical investigation which is not shown here, convergence of the solution is affected by the flow 
velocity. For very high velocity flow, more elements are needed to assure the accuracy. Therefore, total number of elements NS 
= 40 and M = 20 are used through out this study. Numerical examples are presented for simply supported shell at both ends 
with φ1 = φ2 =φ. In the analysis, only radial spring is considered (Ku = Kv = Kβ = 0). Fig.2 shows the results. 
 
 
 
 
 
 
 
 
 
 
 

       (a) R/L = 0.10, R/h = 20       (b) R/L = 0.30, R/h = 200 
Fig. 2. Variations in Ω of the first mode with non-dimensionalized velocity 2

S (1 )U U Eρ υ= − .  
(Simply supported shell, υ = 0.30, KwL/E = 0.003, φ = π/3, and ρS/ρL = 0.128) 

 
4. Conclusions 
 Fluid flow-induced vibrations of cylindrical shells on elastic foundations are shown by the semi-analytical hybrid finite 
element method. The method inherits the versatility of the Finite Element Method in applying the boundary conditions. 
Non-uniformities of the foundations both in the circumferential and longitudinal directions can be simply taken into 
consideration by means of the Fourier series and an element mesh strategy. Convergence is affected by the flow velocity. 
Generally, more elements are needed for high flow velocity to assure the accuracy of the solution. 
 Natural frequencies of the vibrating system are decreased by the flow of the fluid. At a certain velocity the system lost its 
stability due to divergence. Both shells with or without foundation behave similarly. However, the existence of the foundation 
increases the natural frequency and the critical velocity. It has been observed that the effect of the foundation is more 
pronounced for shells with small values of R/L and R/h.  
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