突起付きH形鋼引抜き耐荷力に関する解析的検討

川鉄橋梁鉄構㈱	正会員	○谷山 健二	川鉄橋梁鉄構㈱	正会員	熊野	拓志
長崎大学工学部	正会員	中村 聖三	片山ストラテック	正会員	森	圭司

1. まえがき

鋼上部構造とコンクリート橋脚を剛 結する上下部一体構造は,耐震性の向 上,維持管理の簡略化に繋がる構造形 式である.その剛結部は異種材料で構 成されることから力学的挙動が複雑で あり,それらを明らかにするために 様々な剛結構造について研究が進めら れている.本研究は,突起付きH形鋼 (SH)を剛結部コンクリートに定着した 構造の耐荷力に関する実験結果¹⁾を, 解析によって再現することを試みたも

のである. なお、耐荷力の解析結果への影響因子は, ①SH とコンクリートの付着特性, ②コンクリートの 材料特性, ③鋼殻の寸法(長辺と短辺)と板厚の影響 などが考えられる. ここで, ①はそのメカニズムのモ デル化が複雑であるうえ, SH の突起部は剛なずれ止 めとして十分な付着力を有することが実験により検証 されている²⁾ため今回の検討対象からは外すこととし, 最大荷重に対する②および③の影響に着目した.

2. 解析概要

本研究で対象とする構造は図-1に示すように、横桁 ウェブ鋼板とセル鋼板とで構成される筒状の矩形断面 の中にSH (DH200×204×8×12,突起高1.5mm,ピッ チ15mm)を挿入し、断面内にコンクリートを充填し た実験供試体¹⁾である.実験においてはSH下端を固 定し、横桁ウェブ鋼板天端に荷重を与えている.

解析ソフトは MSC. Marc とし、図-2 は FEM 解析モ デルを示す.境界条件は、SH の下に節点を設けその節 点を完全固定とし、その固定点と SH をモデル高さ方 向にだけ剛性を持つバネ要素(バネ剛性:2.0× 10⁵N/mm²)で繋いだ.また載荷方法は、横桁ウェブ鋼 板天端に強制変位を与えることとし、固定点における モデル高さ方向の反力値から載荷荷重を求めた.各解 析モデルの諸元は表-1 に示すとおりであり、セル鋼板 厚およびセル鋼板間隔を解析パラメータとした.

表-1 解析モデルの諸元

No.	セル 鋼板厚 (mm)	セル鋼板 間隔 (mm)	定着長 (mm)	コンクリート 強度 (N/mm ²)
Case1	12	700	250	30.3
Case2	3.2	700	250	35.68
Case3	6	700	250	35.68
Case4	6	400	250	35.68
Case5	6	1000	250	35.68

表-2 使用材料の材料特性

(a) 鋼				
	ヤング係数	降伏点		
	(kN/mm^2)	(N/mm^2)		
H形鋼		416.1		
鋼殻 スタッド	200	300.9		

(b) コンクリート

No.	ヤング係数 (kN/mm ²)	圧縮強度 (N/mm ²)	引張強度 (N/mm ²)	
1	25.3	30.3	2.63	
2,3,4,5,	24.6	35.7	2.91	

キーワード:上下部一体構造,突起付き H 形鋼,付着強度,FEM 解析 連絡先:〒675-0155 兵庫県加古郡播磨町新島1番地 TEL:0794-37-0800, FAX:0794-35-5656 表-2 は材料特性, 図-3 はモデル化された 応力-ひずみ曲線を示す. 鋼の応力-ひず み曲線はバイリニアモデルとし, コンクリ ートについてはコンクリート標準示方書に 記載されている応力-ひずみ曲線を参考に, 材料試験から得られた結果を多直線近似し た. 降伏条件については, 鋼材に Von Mises

の条件、コンクリートに Drucker-Prager の条件を適用した. なお、SH と充填コンクリートの界面においては、高いず れ止め特性があると考え両者の節点を共有した.

3. 解析結果と実験結果の比較

図-4 は相対変位の出力箇所と荷重-変位曲線の例を,表 -3 は実験および解析結果を示す.最大荷重は図中に〇印で 示す荷重-変位曲線のピーク値,付着強度₇ は最大荷重

(N)を付着面積(突起が付いているフランジ外側のみを 考慮) で除したものである. また, 文献 1)と同様, セル鋼 板による拘束効果の影響を表現するために、セル鋼板厚を SH のフランジ幅で除した拘束係数 K_c (=t/B) を導入し,付 着強度 τ_B をコンクリート強度の平方根で除した $\tau_B / f_c^{, 0.5}$ と の関係を調査した.その結果は図-5に示すとおりで、図中 の近似直線は実験によって得られた結果から $\tau_B / f_c^{'0.5} \ge K_c$ に線形関係があるとして最小2乗法により傾きを求め得ら れたものである. 解析結果と実験結果とにおける最大荷重 および付着強度の誤差は最大で 15%程度となっており, FEM 解析は実験を比較的良く再現していると言える.また, 実験では Case3 の最大荷重が他の供試体と比較して最も大 きくなっているが、その傾向は解析結果においても同様で ある. 付着強度なをコンクリート強度の平方根で除した値 も、実験値と解析値で比較的良く一致しており、両者の誤 差は10%以内であった.また,図-5において解析結果は実 験で得られた近似直線付近にあり, FEM 解析によりセル鋼 板の拘束効果もある程度再現できていると考えられる.

4. まとめと今後の課題

本研究では,SH 引抜き実験の最大耐荷力および付着強 度に及ぼすセル鋼板による拘束の影響について,解析によ って比較的精度良く再現することができた.今後の課題と

	最	大荷重(kN	付着強度(N/mm ²)		
	解析	実験	比	解析	実験
Case1	1099.6	1168.2	0.94	10.78	11.5
Case2	1086.8	1042.0	1.04	10.65	10.2
Case3	1319.7	1212.6	1.08	12.94	11.9
Case4	1130.3	1158.5	0.98	11.08	11.4
Case5	1189.7	1033.7	1.15	11.66	10.1

しては、SH 突起部の付着メカニズムの検討、コンクリートの引張域におけるひずみ軟化を考慮したモデル

図-5 $\tau_B \geq K_c$ の関係

の作成,ならびにクラック進展後のモデル化方法の確立などが挙げられる.

参考文献

- 1) 小原孝之ら:鋼桁と突起付き H 形鋼を用いた SC 柱脚との剛結構造の提案,構造工学論文集, Vol.50A, pp1071~1082, 2004.3
- 高須賀丈広ら: 突起付きT形鋼の付着性能および水平せん断抵抗に関する実験研, 鋼構造年次論文報告集, Vol.12, pp83~90, 2004.11