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1. INTRODUCTION 
  The constant demand and necessity for light weight efficient 
structures have recently led the structural engineer to the field of 
structural optimization and simultaneously to the use of non-
conventional materials, such as fiber reinforced polymeric (FRP) 
matrix composites, primarily because of their high-strength to 
weight ratios. There exists a large activity in the area of material 
characterization, analysis, fabrication and design of composite 
structures. The lightweight and the high corrosion resistance of FRP 
composites make them particularly suitable for bridges, aerospace 
components, storage tanks or large-span structural members. In this 
paper the FRP structural members that are modeled are thin-walled 
orthotropic cylindrical shells and it is their elastic buckling criteria 
under axial compression forces that are considered. It is well-
known that axially compressed cylindrical shells have a buckling 
behavior which is very sensitive to initial geometric imperfections1). 
The present paper investigates the non-linear buckling behaviour of 
the FRP composite cylindrical shell having material properties 
similar to those of experimentally studied columns previously by 
the first author. From accurate solutions of the nonlinear shell 
equations it will be demonstrated that for increasing amplitudes of 
initial imperfections the elastic buckling loads exhibit well defined 
lower bounds.  

 
2. ANALYTICAL METHOD 
  For an imperfect thin-walled 
circular cylinder of longitudinal 
length L, wall-thickness t, and 
radius R, shown in Fig.1, the 
change in the total potential energy, 
consequent upon the application of 
a uniform axial compression stress 
of σ, may be written as  
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where M∏  is the membrane strain energy, B∏ the bending strain 

energy, and λ∏  the increase in load potential for an axial 
compressive stress of σ.  
  The strain-displacement relations associated with deformation 
from an initial imperfection, w0 , are taken to be of the Donnell-
Mushtari-Vlasov type for shallow shells. The bending and 
membrane stress resultants are related to strains through the 
orthotropic constitutive equations 
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whereν =0 1/3  and E0 are basically constants. 

  The end boundary is assumed to be supported in such a way as to 
confirm with the classical simple support, corresponding with the 
conditions 
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By taking displacement functions u, v and w as linear combinations 
of the harmonic expressions, these boundary conditions will be 
exactly satisfied since each separate component satisfies the 
boundary conditions of Eq (7). 
  The initial geometric imperfection is expressed as  

( ) ( )π=0 0
,1 cos sinbw w by R x L                 (8) 

 

3. STRUCTURAL MODELLING 
  The compressive stress may be written in terms of the non-
dimensional load parameter λ as  

λ σ σ σ ν≡ = − 2
0 0, 3(1 )cl cl tE R                (9) 

In this analytical study, a commercially available unidirectional 
glass fiber laminar unit with a 0.2 mm thickness has been adopted 
and the forty lamination of the unit has obtained four type 
orthotropic cylindrical shells with symmetric three-layers and a t = 
8mm thickness as listed in Table 1. The basic Young modulus E0 in 
Eq.(9) was taken to be 27.1GPa which is the average value of the 
bending stiffness in x-direction and in y-direction. Total volume of 
fiber has been adopted to be V = 60%, and the fiber volume ratio in 
circumferential direction Vy is adopted to be a parameter in this 
study. Table 2 shows the coefficients in Eqs (3)-(5) obtained from 
the classical lamination theory. 
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Fig.1 A Cylindrical Shell
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Table 1  Lamination Details 
model Vy/V fiber orientation angle(deg.)  90 0 90 

C20T 0.2 4 32 4 

C50T 0.5 10 20 10 

C80T 0.8 

number of lamina 

16 8 16 

model Vy/V fiber orientation angle(deg.) 0 90 0 
 C50L 0.5 number of lamina 10 20 10 

 
Table 2  Coefficients in Eqs (3)-(5) 

 11η  12η  22η  66η 11µ  12µ  22µ 66µ
C20T 1.261 0.061 0.510 0.193 0.909 0.044 0.879 0.193 

C50T 0.896 0.061 0.896 0.193 0.415 0.028 1.371 0.193 

C80T 0.513 0.062 1.285 0.194 0.265 0.032 1.523 0.194 

C50L 0.896 0.061 0.896 0.193 1.371 0.094 0.415 0.193 

 

 
4. RESULTS AND DISCUSSIONS 
  In this paper the results of ( )ν= − =2 2

01 100Z L Rt  are 
shown in figures due to the limit of space. It has been well-known 
that the geometrical parameter of the complete cylinders is only this 
Batdorf parameter Z  when the shallow shell assumption (DMV-
formulation) is used. That is, all governing equations can be 
normalized using only the independent geometric parameter Z . But 
in non-linear numerical step-by-step calculation another geometric 
parameter is needed to be defined. In the present study, the radius 
thickness ratio R/t. has been selected, and then referring to 
previous papers1,2) R/t = 405 was adopted.  
  Included in Fig.2 are representative imperfect curves for C50T 
(b=11), where the horizontal axis represents the total displacement 
component having circumferential wave number b and the single 
axial wave number. It can be seen that the sensitivity of buckling 
load to changes in imperfection is most severe when the 
imperfection has a very small amplitude. 
  Selected nonlinear-analytical obtained buckling loads λc  are 
plotted in Fig.3 for various imperfection amplitudes and 
circumferential wave number of imperfectionb . The maximum 
buckling loads max

cλ  for perfect (imperfection free) shells are 
much sensitive to the ratio Vy/V as well as the lamination detail in 
Table 1, however, the lower limit for large imperfections has 
almost the same circumferential wave 9 11b = ∼ . The minimum 
buckling loads λmin

c  on each figure in Fig.3(a)-(d) are listed in 
Table 3 which shows λmin

c decreases as the ratio Vy/V increases.  
 

Table 3  Minimum Buckling Loads  
 λmin

c  b 0
,1bw t  

C20T 0.1661 11 1.20 

C50T 0.1586 11 1.40 

C80T 0.1330 9 2.00 

C50L 0.1539 11 1.00 

 

  Figure 4 shows the imperfection sensitivity, where the vertical 
axis is the ratio λ λmax

c c . You can see that in all the cases the 
lower bounds of λ λmax

c c  are approximately equal to 0.3, 
however, the case of C50L has much more sensitive to the case of 
C50T. These characteristics are obtained in other cases for various 
wave number b. 
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Fig.2  Load versus Deflection Curves for C50T(b=11) 

Fig.3  Non-Linear Buckling Loads  

Fig.4  Initial Imperfection Sensitivity 
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