土壌汚染シミュレーションに関する研究

四国総合研究所	正会員	福岡	寛
香川大学工学部	正会員〇)井面(二志

1. はじめに

現在、環境汚染は、社会に非常に大きな影響を 与えており、環境汚染の解決は急務となっている。 その中でも土壌汚染は地下の複雑な環境条件によ り、対策が環境汚染の中で最も遅れているのが土壌 汚染である。汚染物質を浄化、復元するためには汚 染状況を把握する必要があり、土壌汚染状況を正確 に把握するには、数多くのボーリング調査が必要で あるが、時間、労力、コスト等の面で問題がある。

そこで、本研究ではCAを用いた土壌汚染物質 拡散シミュレーションシステムの開発を行う。シス テム開発の第一段階として、塩化物イオンを対象と して土壌汚染シミュレーションへのCAの適応可 能性を検証する。

2. CA (セルオートマトン) とは

CA(セルオートマトン)とは、自己組織化現象(ま わりとの相互の関わり合い『局所的な相互作用(局 所ルール)』を積み重ねていくうちに、組織が自然 に形作られる特徴を持つ)の原理に基づく計算手法 である。隣り合うセル間の相互作用を系全体で繰り 返すことにより複雑現象を表現できることが大き な特徴である¹⁾。

3. 実験の概要とシミュレーションモデル設定

本研究では、シミュレーションを行うにあたり、 電力中央研究所の研究報告²⁾の中で実施されている、 塩化物イオンの土壌カラム実験をシミュレーショ ンの対象とした。土壌汚染シミュレーションに CA を適応するためのモデル化と局所ルールについて 概説する。

(1) 土壌カラム実験のモデル化

土壌カラム実験をモデル化するにあたり、まずカ ラム空間をセルに分割する。本研究では、図 1(a) に示した長さ 82.4cm のカラムを 100 等分し、さら に地上部と S5 に相当するセルを追加した合計 102 個のセルを用いて実験装置のモデル化を行った。セ

香川大学工学部	正会員	白木渡
四国リコー(株)	非会員	岩崎賢司

ル分割状態を図1(b)に示す。

実験における土壌には、通常層と不動水存在層が 存在しており、各層における土壌の状態を表1に示 す。

(b) セル分割

図1 カラム実験装置のモデル化

表1 通常層と不動水存在層での土壌状態

	動水部	土粒子部	不動水部
通常層	0	0	×
不動水存在層	0	\bigcirc	0

・土粒子部:元素が吸着する土粒子部分

・動水部 :水の流れる部分

 ・不動水部:実質的に動きえない水の部分(土) 粒子内部に吸収、封じ込み空気の近傍)

不動水存在層の全土壌に占める割合は、カラム 実験における不動水が存在しない場合の土壌浸透 水の平均流速と塩化物イオンの破過曲線から求め た流速との比較より26%と設定した。

(2) 塩化物イオンの拡散ルール

実験では、塩化物イオンを含んだ水溶液が地上か ら常に C1:100 μg/ml を流出させていることより、 セル0番目に塩化物イオンの元素量が常に100存在 すると設定し、塩化物イオンの元素量100の状態を 初期濃度とする。

塩化物イオンは、上部のセルから下部のセルヘ順 に1セルずつ確率により移動するとした。元素の移 動は、不動水領域では主として分子拡散により移動

キーワード 土壌汚染、セルオートマトン、シミュレーション 連絡先 〒761-0396 香川県高松市林町 2217-20 香川大学工学部 TEL087-864-2245

するため、元素の移動速度は流速に比べて著しく小 さくなる。そこで、通常層と不動水存在層において 移動確率に差を設定した。移動確率の差は、各層の 容積含水率の差により生じるものとし、移動確率の 比を通常層:不動水存在層=0.629:0.463とした。

4. CA によるシミュレーション結果

(1) 塩化物イオンの移動確率

通常層における塩化物イオンの移動確率 15%、 30%、45%、60%、75%、90%、99%の場合におい て、最下端セル(S5)の C/Co(元素濃度/元素の添加 [初期]濃度)が 0.5 となる時間が、実験により求め られた塩化物イオンの破過曲線における、S5のC/Co が 0.5 となる 12.5 時間に近くなる各層の移動確率 の組み合わせを検討した。なお、不動水層は均等に 存在すると仮定した。移動確率の組み合わせは、図 2 に示す通常層 99%、不動水存在層 72.27%の時、 最も近い結果となった。

(2)不動水存在層の位置の検討

(1)の設定においては、実験の破過曲線と比較す ると低い位置でテーリング(塩化物イオンの元素量 の変化が尾を引いたように緩やかになる)が発生し ている。この事は、上部に不動水層を配置したこと により、塩化物イオンの移動速度が遅くなっている 可能性があるため、不動水層を下端部に集中して不 配置を行った。紙面の都合上省略するが、(1)のシ ミュレーション結果より実験結果に近似した結果 が得られたが、まだテーリングの位置が低くなって いる。

(3) 不動水存在層の割合の検討

(2)の設定においても、まだテーリングの位置が 低いため、不動水存在層の全土壌に占める割合を 26%から21%に変更した。その結果を図3に示す。 これまでのシミュレーションの中で最も良いシミ ュレーション結果となったが、最下端部の値にずれ が生じている。

5. おわりに

本研究では効率的な土壌中の汚染物質の挙動の シミュレーションを検討するため、CA による土壌汚 染シミュレーションを行った。簡単なセル間の局所 的相互作用によって、土壌が汚染物質に汚染される 状況を再現することができた。

今後の課題としては、さらなる精緻なパラメータの設定と効率的なパラメータの設定方法、2次元C Aへの拡張などが挙げられる。

参考文献

1)加藤恭義・光成友考・築山洋:セルオートマトン
法 -複雑系の自己組織化と超並列処理-,森北出版株式会社(1998)

2) 電力中央研究所報告 研究報告: T86096 各種元 素の土壌中移行機構(その 1) - 土壌中移行過程のモ デル化-, 財団法人電力中央研究所(S63.3)

図 2 塩化物イオン移動確率(通常層 99%、不動水存在層 72.27%)、不動水存在層の位置が均等における シミュレーション結果

図 3 塩化物イオン移動確率(通常層 99%、不動水存在層 72.27%)、不動水存在層の割合 21%における シミュレーション結果