浸漬型中空糸膜モジュールの設置方法が膜面に働く応力に与える影響

武蔵工業大学 学生会員 黒坂正和,正会員 長岡 裕 三菱レイヨン・エンジニアリング(株) 柴田規孝, 小林真澄

1.はじめに

膜分離活性汚泥法における膜面の洗浄には,気泡流 により,膜表面に作用するせん断応力が大きく影響し ている.本研究は,水平・鉛直に設置した中空糸膜に 作用する応力を水平方向,鉛直方向の2方向で測定し, 空気量が中空糸膜に与えるせん断応力とその揺動性(標 準偏差)の影響を明らかにすることを目的とした.

2.実験装置及び実験方法

<u>膜分離ユニット内における水平方向に設置した中空糸</u> 膜に作用する応力の測定

Fig.1 に中空糸膜を水平に設置した条件における実験 装置概略図を示す.膜モジュールは外径 540(µm)中空糸 膜が 720 本で構成されており,ユニットには,膜モジ ュールを並行に4つ接続した.中空糸膜に作用する荷 重は,同時に2方向(水平[X]方向,垂直[Z]方向)測定 可能な荷重センサーを用いて測定し,応力への変換は 流れ方向に垂直となる投影面積を使用した.測定点は ユニット内部側の1つをテストモジュールと設定し, 上端部(Top)と下端部(Bottom)の2箇所とした.測定を 行う中空糸膜は,上・下端部からともに8本目までを 束ね,センサー端子へ接続した.空気流束(ばっき気風 量)は0.284~2.83 (cm³cm⁻²sec⁻¹)の範囲で変化させた.

<u>鉛直方向に設置した中空糸膜に作用する応力の測定</u>

Fig.2に中空糸膜を垂直に設置した条件における実験 装置概略図を示す.中空糸膜(ポリエチレン製 MF 膜) は直径 540µm のものと,直径 780µm のものを使用 し,1本単独のものと3本束ねたものを縦に設置して測 定を行った.ディフューザにはエアストーン型のもの を用い,気泡が安定して上昇するように,平行に2本 設置した.中空糸膜の張力を一定にするため,基準長 さを設定した.3.94(GPa)の引張り応力を作用させたと きを基準長さとし,その 99.7%で設置した.応力の変 換は,測定値を中空糸膜の表面積で除すことで求めた. 3本束ねたものは,膜1本の表面積を3倍した値を用い た.中空糸膜を鉛直に設置した場合の測定条件を Table1に示す.

水道水を満たした実験槽内に装置を設置し,気泡流を 発生させ,水平(X 軸)方向,水深(Z 軸)方向の測定を行 った.空気流束の定義は,ディフューザから放たれた 単位時間空気量を,気泡が上昇する流路面積で除した 値をとし,中空糸膜を鉛直に設置した場合については, 気泡の上昇流路を直径18cmの範囲とした.また各空気 流束で4回データを取り平均値を計算した.気泡流を 発生させず,水道水が静止した状態における出力値に よりゼロ点補正を行った.

Fig.1 Schematic diagram of an experimental set-up

(fibers were horizontally set up)

キーワード: 中空糸膜モジュール,気泡流,膜面応力

連絡先: 〒158-8557 東京都世田谷区玉堤1丁目28番1号 武蔵工業大学 TEL 03-3703-3111(内線3257)

Table1 Experimental condition

(fibers were vertical set up)

	Case1	Case2	Case3	Case4
Air flux (cm/sec)	0.327 - 1.31			
Outer diameter (µm)	540	540	780	780
Inner diameter (µm)	350	350	540	540
Length (mm)	378	380	377	371
Number of membrane	1	3	1	3

3.実験結果及び考察

Fig.3 に中空糸膜を水平に設置した場合,Fig.4 には鉛 直に設置した場合での空気流束と時間平均応力の関係 図を示す.Fig.3 からは上端部(Top)よりも下端部 (Bottom)の方が平均応力は大きい傾向にあることが分 かる.これは下端部では気泡流の影響がダイレクトに 作用するが,一方上端部においては気泡流のエネルギ ーが中空糸膜を通過してくる際に散逸し,測定値が小 さかったのであると考える.Fig.4 からは水平(X)方向の 平均応力よりも鉛直(Z)方向の方が大きい.これは気泡 流が安定して上昇するようにディフューザを平行に 2 本設置しているため,水平方向に作用する応力が相殺 されたためであると考える.また中空糸膜が単独 1 本 の場合では,空気量が増加するにつれて直線的に時間 平均応力も増加する傾向を示した.

Fig.5 に中空糸膜長手方向, Fig.6 に中空糸膜垂直方向 に作用する空気流束と応力標準偏差の関係図を,中空 糸膜を水平・鉛直に設置した場合でそれぞれ示す.Fig.5, Fig.6中の鉛直に設置した場合での中空糸膜径は 540µm

の標準偏差の値である.Fig.5とFig.6を比較すると, 中空糸膜垂直方向(Fig.6)の方が標準偏差値の増加は緩 やかであることが分かる.また中空糸膜を水平・鉛直 に設置した場合で比較を行うと,水平に設置した場合 の方が大きい値を示した.

4.まとめ

中空糸膜が水平・鉛直設置されている条件において, 作用する応力の測定を行った結果,以下の結論が得ら れた.

中空糸膜を水平に設置した場合,分離膜モジュール 上端部よりも下端部の方が時間平均応力は大きかった. 中空糸膜を鉛直に設置した場合,水平方向よりも鉛直 方向の方が,時間平均応力は大きかった.

測定標準偏差値より中空糸膜の揺動性を検討した結 果,中空糸膜垂直方向よりも,長手方向の方が大きく 揺動している事が分かった.

(fibers were horizontally set up)

(fibers were vertical set up)

Fig.5 Relationship between Air_flux and Standard deviation (longitudinal direction of fibers)

(lateral direction of fi