漏水を有する RC セグメント中の鉄筋腐食の初期進展に関する実験的研究(1) - 水圧の漸次増加時のひび割れ幅と漏水量の関係 -

金沢工業大学大学院(現,ハザマ) 学生員 荒井 匠

金沢工業大学 石田 孝弘

金沢工業大学 正会員 木村 定雄

1. はじめに

シールドトンネルの建設において,コスト縮減などを目的として,その用途に応じて二次覆工を省略する傾向が強まっている.二次覆工が省略されることで,主体構造である RC セグメントに貫通した微細ひび割れが存在すると,漏水現象とあいまって,セグメントの長期耐久性能が低下することが懸念される.

これまで、コンクリートの漏水に関する既往の研究によると、ひび割れ幅が 0.2mm 以下では自癒効果により漏水量が減少すると考えられている。しかしながら、これらの研究成果では、大深度の高水圧を考慮した知見は、ほとんどみあたらない 1),2).

そこで,筆者らは地下水位 50m までを想定して,水 圧が漸次増加する状態下での漏水現象を把握すること を目的としてモデル実験を実施した.

2. 貫通ひび割れを有する RC セグメントのモデル化

外径が5~8mのセグメントリングを想定して,厚さ300mmのRCセグメントをモデル化した供試体を作製した.供試体の形状寸法は 150×300mmである.漏水現象および鉄筋腐食のメカニズムを単純化するため,モルタルおよび丸鋼(SR235-9)を用いた.貫通ひび割れは割裂引張により導入した.供試体の内部には,鉄筋腐食の進展をマクロセル腐食で評価するため,分割鉄筋を埋設した.また,貫通ひび割れの導入に際し,ひび割れ幅を保持するために,全面をエポキシ樹脂でコーティングした補強鉄筋を埋設した.ひび割れ幅は流入面,流出面で3点づつ測定した.また,ひび割れを導入した後,5日間供試体を放置し,ひび割れ幅が安定するのを待った.表1はこのようにして得られたひび割れ幅を示したものである.なお,以降に示すひび割れ幅は,実験前の値とする.

3. 漏水現象のモデル化

漏水現象は,地下水のトンネル内への流入であるこ

とを想定して,実際の地下水を用いた.地下水の水質は表2に示すとおりである.また,地下水位50mまでを想定して,本実験では水圧を段階的に増加させる(漸次増加)こととした.初期水圧は実験装置の自然水頭である0.01MPaを作用させ,漏水量が安定したことを確認した後,0.1MPaごとに水圧を増加させ,0.5MPaまで水圧を増加させた.漏水量の測定は1時間間隔とし

表1 漏水実験前と実験後の平均ひび割れ幅

	平均ひび割れ幅:w(mm)					
供試体	流入面		流出面		全平均	
	実験前	実験後	実験前	実験後	実験前	実験後
Sp.1	0.08	0.03	0.11		0.10	0.03
Sp.2	0.15	0.14	0.14	0.11	0.15	0.13
Sp.3	0.12	0.14	0.20	0.12	0.16	0.13
Sp.4	0.21	0.20	0.18	0.14	0.19	0.17
Sp.5	0.25	0.26	0.33	0.12	0.29	0.19
Sp.6	0.38	0.34	0.31	0.27	0.34	0.31

表 2 地下水の水質検査結果

試験項目	試験結果		
pH値	6.6(18°C)		
電気伝導率	253(mS/m at25°C)		
溶存酸素	3(mg/l)		
遊離炭酸	38.7(CO ₂ mg/l)		
塩化物イオン	13.7(mg/l)		
硫酸イオン	11.1 (mg/l)		
全硬度	96.3(mg CaCO ₃ /I)		
カルシウム硬度	52.1 (mg CaCO ₃ /I)		
溶性ケイ酸	40 (mg/l)		

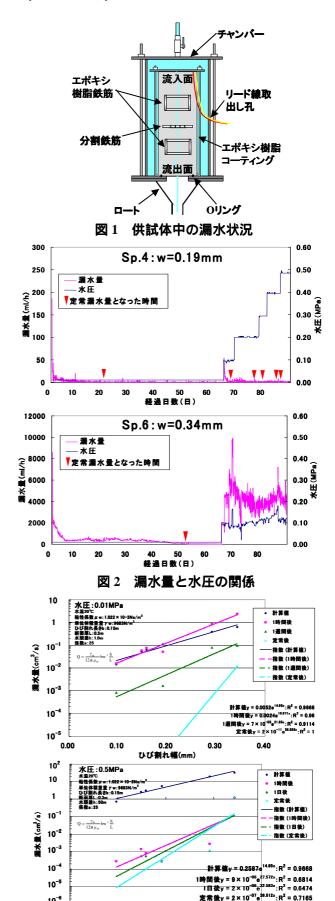
写真 1 漏水実験装置

キーワード:シールドトンネル,セグメント,漏水,ひび割れ,劣化

連絡先:〒921-8501 石川県石川郡野々市町扇が丘 7-1 TEL:076-248-8426 FAX:076-294-6713

た、写真1および図1は漏水実験の装置と供試体中の 漏水状況を示したものである.

4. 実験結果およびその考察


漏水量と水圧の関係の例として, w=0.19mm と w=0.34mm の実験結果を図 2 に示す .水圧 0.01MP a で 通水した直後は,いずれのひび割れ幅でも漏水現象が 生じ,その後漏水量は減少し定常状態となった.ひび 割れ幅 0.2mm 未満のものでは漏水はほぼ停止し,ひび 割れ幅 0.2mm 以上では約 10ml/h で定常状態となった. 一方,水圧を段階的に増加させると一時的に漏水量は 増加したが w=0.34mm 以外のケースでは時間の経過 とともに減少し,定常状態となった.なお,水圧0.01 MP a の段階は他の水圧段階に比べて水圧を長い時間 保持した.これは漏水量および鉄筋腐食を測定するマ クロセル電流が定常状態になることを確認するためで ある.

ひび割れ幅と漏水量の関係の例として,水圧 0.01MP a と 0.5MP a を図 3 に示す. 図中の計算値はコ ンクリート標準示方書の方法により求めた値である 3). 水圧 0.01MPa をみると,漏水量の計算値と実測値は漏 水開始から1時間後ではほぼ同程度となった.しかし. 時間の経過とともに、実測の漏水量は減少した、これ は,モルタル中の未水和物が水の供給により反応した り,微小物が目詰まりしたことによるためと考えられ る.水圧 0.5MPa をみると,水圧の増加直後でも漏水 量の実測値は、計算値と比べて小さくなった、これは、 一度目詰まり現象が生じると,その後に水圧が増加し ても目詰まり効果により漏水しずらくなるためと考え られる.また,ひび割れ幅0.2mm未満では,目詰まり 効果が期待でき,地下水位 50m を想定した 0.5MP a 時 の漏水量は約 10⁻⁴cm³/s となる.以上から,水圧が漸次 増加するような漏水現象であれば, 0.5MP a の高水圧 が作用したとしても約 0.2mm 以下のひび割れ幅であ れば漏水は少なくなると考えられる.

参考文献

1)例えば, 壹岐, 清宮, 山田, 高野: 沈埋トンネル側 壁のひび割れからの漏水と自癒効果の確認実験、コン クリート工学年次論文報告集, Vol.17, 1, pp.737-742, 1995.6

2) 例えば, 橋本, 松浪, 中村, 湯浅, 東狐: RC セグメ ントの水密性に関する実験的研究(その3),土木学会第 58 回年次学術講演会 , -446,pp.891-892 , 2003.9

0.20 ひび割れ幅(mm) 図3 ひび割れ幅と漏水量の関係

3)土木学会:2002年制定コンクリート標準示方書[施 工編], pp.32-33, 2002

0.00