PCLNG 地上式貯槽 側部冷熱抵抗緩和材の変形性能確認試験

清水建設(株)	正会員	阿部	隆司*1
清水建設(株)	正会員	山本	康之
堺 LNG(株)		村上	岳彦
三菱重工業(株)		谷	英樹
東洋ゴム工業(株)		八木	浩二*2

1.はじめに

現在, 堺 LNG(株)堺 LNG センター建設工事において, PCLNG地 上式貯槽(容量 14 万 kl × 3 基)を建設中である.LNG タンクの外 槽ライナー内面に設置されるポリウレタンフォーム (以下 PUF と 称す)は,LNG(-164)漏液時に,PC防液堤への冷熱の伝導を 緩和することを目的としている PUF の仕様と標準構造図をそれぞ れ表 1,図-1に示す.

本 LNG タンクの外槽ライナーは,プレストレスの導入やそのク リープ現象の影響でタンク内槽方向に変形する.逆に漏液時は液圧 によって PC 防液堤方向に変形する (図 - 2参照). このような外 槽ライナーの構造は既存の LNG タンクでは無いため, 外槽ライナ ーの変形による PUF の追従性と強度を確認する必要があった、そ こで今回試験を実施した.

変形性能確認試験では、外槽ライナーの変形によって生じる PUF 内のひずみに着目し,実験モデルと実タンクモデルの FEM 解析の 結果を比較することによって変形性能の評価する.

試験条件を表 - 2 に示す.実際のライナースパン(1,793mm)の1/2 スケー ル(900mm)で試験供試体を4体作成した.試験体の平均厚さは58.1mm であ

図 - 2 外槽ライナーおよび PUF の 変形

表 1 PUF の仕様				
	一体成形部	手吹き部		
圧縮強度	29 N/cm ² 以上	29 N/cm²以上		
密度	70~85 kg/m³	55~80 kg/m³		
熱伝導率	0.0233 W/mk以下	0.0257 W/mk以下		
厚さ	47~118mm(端部を除く)	57 ~ 119 mm		

2.変形性能確認試験の概要

表 2	試験条件	
項目	条件	
試験体数	4 体	
冷熱温度	-165 以下	
試験体寸法	900mm × 525mm	
	(1) 57.8 mm	
厚さ	(2) 58.0 mm	
	(3) 58.1 mm	
	(4) 58.6 mm	

る.

2.2 試験装置

2.1 試験条件

図 - 3 に PUF ライナー追従性試験装置を示す. 試験体 の冷却は冷媒に LN₂(液化窒素)を用いて行う.冷却方法 は間接冷却とする.試験体は,装置内で3点支持され両端 は固定し中央の支持点を上昇させることにより変形を与 える.試験体のガラスメッシュ面,ライナー面に計4箇所 熱電対を設置し温度をモニターする.あらかじめ試験体中

キーワード: LNG, PUF, 変形性能確認試験

^{*1 〒541-8520} 大阪市中央区本町 3-5-7 御堂筋本町ビル 06-6263-2814 *2 〒675-1112 兵庫県加古郡稲美町六分一 1183 0794-95-1902

央を 30mm 変形させた状態で断熱枠を設置し 断熱ケース内にセットしたアルミ容器に LN2を注いで冷却する. ガラスメッシュ面の温度が-165 以下で安定するまで(3時間程度)待機する.所定の温度で安定したところ で装置中央のボルトを上昇させて変形を増加する.試験体の破断を音で確認し変形量を測定する.

2.3 評価基準(実タンクモデルの解析)

評価基準は、実タンクの外槽ライナーと PUFの FEM モデ ルの解析結果より 漏液圧と温度応力によって発生する PUF の最大ひずみ(2.64%)に安全率1.2を考慮した値(3.17%) とした、なお、PUF の厚みは施工精度範囲内で負担が最も 大きくなる最大厚(端部 100mm)とした.表-3に評価基準 値を図-4に解析結果を示す.

3.試験結果と考察

3.1 試験モデルの解析

試験に先立ち試験モデル(1/2スケール)での解析 を行った. 試験 No.1 (変形量 50mm)の PUF ひずみ コンター図を図-5に示す.変形量の最大部分(試 験モデル右側端部)の上面で最大ひずみが発生して いる.同様の解析を PUF 厚みとライナー変形量の条 件を変えて行った.この解析で得られたライナー変 形量と PUF 厚みとひずみの関係を図 - 6 に示す. ラ イナー変形量と PUF ひずみは比例関係にあり同 一変形量では PUF 厚みが増加するほどひずみが 大きくなることがわかる.

変形性能確認試験では 試験体破断時の変形量 と PUF 厚みを測定し,図-6を用い発生ひずみ 量の評価を行う.

3.2 変形性能確認試験の結果

変形性能確認試験の結果を表 - 4 に示す.変形 性能確認試験で厚み約 60mm における破断時変形 量を測定し,試験モデルにおける FEM 解析の変形量 - ひずみの関係から破断時ひずみ量を算定した.破 表 - 4 変形性能確認試験の結果と破断時ひずみ (FEM による) 断時ひずみは最小値で3.61%であり実モデルFEM解 析より求めた発生ひずみ2.64%に対してFs=1.36で あることから,変形時の PUF の性能(健全性)に問 題ないことが確認できた.なお,熱電対による温度観 測の結果,破断直前まで PUF の断熱性能に異常は認 められなかった.

4.まとめ

本試験の結果, PUF は漏液時, 外槽ライナーが変形した場合も断熱性能を保ちながら追従できることが確認 できた.また,変形性能確認試験の結果を反映し,FEM モデルの端部厚み 100mm を実施工における最大厚み の管理基準値とした.今後,同様なライナー構造を有するLNG タンクのPUF 設計に本実験の成果を反映して いきたい.

図 - 4 解析結果(PUF 最大ひずみコンター図)

試験No.	PUF の	変形量	破断時ひずみ	安全家
	厚み(mm)	(mm)	(%)	女主卒
1	57.8	50	4.01	1.51
2	58.0	43	3.61	1.36
3	58.1	45.5	3.77	1.42
4	58.6	48.5	3.94	1.49
平均	58.1	46.75	3.83	1.45
/# *		ライナー追	試験モデルの解析	最大ひずみ
備考		従性確認試	より求めた破断ひ	2.64% に対
		験	ずみ	する安全率