コンクリートの凍結作用熱ひずみに関する実験的研究

日本大学	学生員	山口	晋
日本大学	フェロー	越川	茂雄
日本大学	正会員	伊藤	義也
太平洋ヤメ	ント㈱中央研究所	鵜澤	正美

1. 目的

近年、凍結融解作用による表面スケーリングの解明、あるいはLNGタンクコンクリートの劣化に着目した(極)低温領域までのコンクリートの作用熱による膨張・収縮に関する研究成果が報告¹⁾²⁾³⁾されているように、あらためて、作用熱によるコンクリートの特性が注目されている。

本研究は、常温から凍結領域までの作用熱によるコンクリートひび割れ発生有無の検討の基礎的資料を 得ることを目的とし、+20 ~ 20 範囲における JIS モルタル供試体(4×4×16 c m)の、主として中心 部および表面ひずみ差について実験検討したものである。

2. 実験方法

2.1 使用材料

セメントは密度 3.16 g / cm³, 比表面積 3260 cm²/ g の普通ポルトランドセメント、および砂は粒径 2mm 以下, 密度 2.64 g / cm³, 吸水率 0.42%の ISO 標準砂を用いた。

2.2 モルタルの配合

モルタルの配合は、水セメント比を 50%および S/C = 3.0 の JIS R 5201 セメントの物理試験方法に準ず るものである。なお、試験材齢は水中 28 日である。

2.3 温度ひずみ測定用試験体の作成

試験体は寸法 4×4×16 c mで、図 - 1 に示す様に 3 連型枠(JIS R 5201)を用い、中心部に温度・ひずみ 測定用の標点距離 50mmの測温機能付の埋込み式モールドゲージ(T社製)を、また、表面にひずみ測定 用コンタクトポイントをそれぞれモルタル打込み前に設置した後、モルタルを打込み作成した。

2.4 用いた降・昇温装置

用いた降・昇温装置は、内容量 408 で+100 ~-40 の性能のチャンバーである。

2.5 温度およびひずみ測定条件

昇降温度範囲は+20 ~ 20 とし、 20 まで ひずみゲージ性能を考慮し、10 /h および+20 ま で約10 /h で直線的に比較的ゆるやかに、降温およ び昇温し、温度とひずみを測定した。また、潜熱現 象を考慮し一定時間0 を維持した。さらに-20 よ りの昇温開始時の境界条件は中心部-表面温度を同 温度とした。なお、試験体は水中養生後の湿潤状態 で、試験中の乾燥の影響を考慮し、サランラップで 被覆したものと被覆無の2種類である。

3.実験結果および考察

3.1 降·昇温性状

キーワード:熱収縮特性、作用熱、降・昇温性状、作用熱ひずみ差 連絡先: 〒275-8575 千葉県習志野市和泉町1-2-1 日本大学生産工学部土木工学科 047-474-2458

図-2 試験体の降温・昇温性状

衣・I 阵・升温时ひ9 の別正紀未						
	降温時		昇温時			
	中心部	表面	中心部	表面		
被覆有	-5.88	-10.63	-6.37	-14.64		
被覆無	-7.60	-13.19	-8.15	-13.38		

表 - 1 降・昇温時ひずみ測定結果

図 - 2 に降・昇温性状を示す。この結果によれば、 被覆の有無にかかわらず、中心部および表面のひず みともほぼ直線的降温収縮および昇温収縮戻りとな る。この場合の収縮量は表 - 1 の通りで、中心部よ り表面部が大きくなることが認められた。

3.2 被覆の有無によるひずみ性状

被覆無のひずみ量が被覆有に比して若干大となる。 (表 - 1)これは乾燥の影響と考えられる。

3.3 中心部 - 表面ひずみ差について

図 - 3 および4 に中心部 - 表面ひずみの測定結果 を示す。この結果によれば最大ひずみ差は被覆有の 場合、降温時で 224×10⁻⁶(温度差 5.8)、昇温時 で 117×10⁻⁶(温度差 5.9)、被覆無の場合、降温 時で 223×10⁻⁶(温度差 3.1)、昇温時で 52×10⁻⁶ (温度差 3.3)となり、表 - 1の単位温度ひずみ 量に比して相当大となることが認められた。

4. まとめ

作用熱によるコンクリートのひずみは本研究結果 によれば均等な体積変化とは異なり部位により相違 し、その差は予想以上に大となることが明らかとな った。このことは作用熱による劣化が凍結融解や LNG タンクコンクリートの他、自然劣化にも注目 する必要性を示唆するものである。

図 - 3 ひずみ測定結果(被覆有)

