小型 RC 供試体による高応力曲げクリープ実験と解析

東京大学大学院	正会員	〇半井像	書一郎
東京大学大学院	学生会員	山下	竜司
東京大学大学院	正会員	前川	宏一

1. はじめに

地中 RC 構造のように常時,大きな外力が継続して作用 する構造物の設計において,高応力領域を含めたクリープ 変形を定量的に予測することで,断面厚さを適正に設定で きることが期待できる.そのためには,引張付着の経時変化 を考慮した解析方法の確立が必要である.本研究は,ひび 割れ以後の引張クリープを含む,構造クリープ変形の実験 との比較により,解析モデルの検証,考察を行い,その妥 当性を検討するものである.

2. 解析モデル

本検討では、多方向分散ひび割れモデルによる数値解 析法 WCOMD-SJ¹⁾を使用する.ひび割れ以後の時間領域 解析には、既報の圧縮時間依存変形モデル²⁾を用いた. ひび割れ以後の Tension-stiffness クリープモデル³⁾を導入 し、ひび割れ以後の長期変形解析に適用した. Tension-stiffness の時間依存性モデルは研究途上にあり、 今回の実験による検証の対象でもある.

3. 高応力曲げクリープ実験

図1に示す載荷試験用試験体および無応力基準試験体 をそれぞれ2体作製し,異なる環境条件下でクリープ試験 を行った.スパン1mの等モーメント部分が試験区間であり, PC 鋼棒にジャッキで引張力を作用させることで,持続曲げ 応力を発生させる(図2).試験中のコンクリートの時間依 存変形に伴う載荷荷重の低下を緩和するために,ばねを 介して鋼材を定着した.設置面にはテフロンシートを使用し, 摩擦を十分に小さくした.載荷は,温湿度が変動する室内 (平均温度12℃,平均湿度60%)および恒温恒湿室(20℃, 60%一定)において行った(図3).養生後,15日間は 150KN,その後は250KNで載荷を行った.

コンクリートは、自己充填型高強度コンクリートを使用した. 配合を表1に示す.コンクリート打設後、31 日間の湿潤養 生を行った.クリープ試験開始材齢における圧縮強度は

98MPa(ピークひずみ 3541µ), 引張強度 5.8MPa であった.

4. 実験結果の比較と考察

スパン中央部での圧縮ひずみ変化を図4,引張鉄筋位 置における長手ひずみ変化を図5,スパン中央部でのた わみ量を図6にそれぞれ示す.20℃恒温の軸方向ひずみ は 170kN 載荷中の計測の不備があったため,250kN 載荷

キーワード: 圧縮クリープ,ひび割れ,引張クリープ,非線形解析,長期変形 連絡先 〒113-8656 東京都文京区本郷7丁目3番1号 東京大学工学部1号館263 TEL03-5841-6146 初期値が 12℃平均と同一になるように補正した参考値を掲 載している. 異なる環境条件(12℃平均, 20℃恒温)に対し て, 170kN 載荷中の中央圧縮ひずみ増加を除き, 両者の 実験結果はおおむね良好に一致していることが分かる. す なわち, 今回の環境条件の違いは, クリープ変形には大き な影響を与えなかったと言える. 一方で, 初期に圧縮ひず みが, 12℃平均と比べ 20℃恒温で大きくなった. 体積収縮 による圧縮ひずみが大きく増加するものの, 一様な収縮の ため, 部材曲率には反映されず, その積分であるたわみに 影響を及ぼさないためである(図7). 環境温度が 20℃に 増加したことで水和反応が進んだため, 体積収縮量に差が 生じた, と考えられる. しかし, 無載荷標準試験体では有意 な差が確認されなかった. 検討を継続中である.

5. 解析条件と実験との比較

養生中の収縮によるコンクリートの初期応力を解析において考慮するため,実験におけるひび割れ発生荷重から収縮の影響を加味した,増分応力に対する引張強度を推定した.その結果,5.4MPaの割裂引張試験強度に対し,3.8MPaが増分応力に対する強度と同定された.ここで,載荷中の自己収縮等の進行分は考慮していない.

解析結果を,図4~6に示す.載荷中の自己収縮等の 影響が比較的小さいと考えられる 12℃平均の実験結果と 比較し,解析結果は,圧縮ひずみとたわみの時間変化と良 好に一致している. 載荷直後の引張ひずみは大きく異なる ものの,その後の増分に関しては,概ね一致している.載 荷直後の引張ひずみの差異は,養生時の体積収縮の影響 と推定される.実験では載荷開始直前の鉄筋ひずみを初 期値としており,養生時における自己収縮等の体積収縮の 影響を含んでいる.見かけの引張強度が 5.4MPa から 3.8MPa に低下していることから, 載荷開始時にコンクリ ートは 1.8MPa の引張応力を鉄筋から受けていることになる. コンクリートおよび鉄筋に均一な圧縮および引張応力が作 用していると仮定することで、力の釣り合いから、鉄筋には 63MPa の圧縮応力が載荷開始時に作用していることにな る.この時の鉄筋のひずみは315μとなり、図5の初期値 のズレにほぼ対応している.

6. まとめ

(1)コンクリートの収縮による体積変化は、たわみの挙動に 大きな影響を与えないと考えられる.

(2)提案する数値解析手法により, RC 構造物のクリープ挙動を再現することが可能である.

参考文献

- Maekawa, K., Pimanmas, A. and Okamura, H.: Nonlinear Mechanics of Reinforced Concrete, Spon Press 2003.
- 2) El-Kashif, K. F. and Maekawa, K.: Time-dependent nonlinearity of compression softening in concrete, *Journal of Advanced Concrete Technology*, 2(2), JCI, 2004.
- 3) 久末賢一・前川宏一・半井健一郎: ひび割れを含む RC 部材の平均引張剛性の経時変化と乾燥収縮の影響,土 木学会第59回年次学術講演会, 2005.