地中 RC 構造物における長期クリープ挙動の解析的評価

東京大学	学生会員	〇山下	竜司
東京大学	正会員	前川	宏一
東京大学	正会員	半井像	書一郎

1. はじめに

大深度地下構造や,高い地下水圧が常時作用する大型 構造では,線形クリープ限界に関する応力制限(許容応 力)で部材厚や鋼材量が決まる場合が多い.構造変形に 連動する静止土圧の緩和は,安全側を考慮して現設計で は無視されている.地下構造のスリム化は掘削土量の低減 と建設コスト縮減に直結するので,設計合理に関する検討 に値する限界状態の一つといえよう.本研究は,系統的な 長期非線形応答解析を通じて,常時土圧に対するコンクリ ートの許容圧縮応力値の割増しを検討するものである.

2. 解析モデルの概要

多方向ひび割れが考慮可能な数値解析法に, WCOMD-SJ⁽¹⁾を適用した.ひび割れ以後の時間領域解析 には,既報の圧縮時間依存変形モデル⁽²⁾を用いた.さらに, ひび割れ以後の Tension-stiffness クリープモデル⁽³⁾を導入 し,ひび割れ以後の長期変形解析に適用した. Tension-stiffness の時間依存性モデルは研究途上にある が,常温環境下での精度の検証は既に行っている⁽⁴⁾.土粒 子骨格構成モデルには,多重塑性関数法を用い,せん断 膨張を考慮し, クリープはここでは無視した⁽⁵⁾.

3. 感度解析と解析条件

コンクリートの許容圧縮応力度を圧縮強度の 1/3 の他に, 50%,66%,80%としてボックスカルバートの試設計を行っ た.鉄筋降伏強度を 30MPa とし常時ひび割れに関して 18MPa を上限応力とした.外側中央部分 150cm(上床版, 下床版),125cm(側壁)における鉄筋が外側の引張鉄筋の 半分のもの(A),外側の鉄筋が一定のもの(B)の 2 種類を用 意した(図1,表1).内側の引張鉄筋はA,Bともに一定であ る.曲げの長期非線形が本研究の主題なので,長期せん 断力に対して安全余裕度が2となるように,せん断に関して 安全側の設計を行った.なお,常時圧縮応力の許容値 80%のみ,コンクリートの圧縮強度を25MPaに設定し,他の シリーズには 30MPaを設定した. 構造物の変形とともに土圧荷重が低下する効果を明らか にするため、荷重が構造物の変形に関わらず一定としたも のと、地盤-構造を一体として解析することで、作用土圧が 構造のクリープ変形に連動して緩和されるものの両者を比 較検討した(図 2).

地盤-構造の一体解析では, 躯体上部の土要素には等 分布荷重が作用するように, 塑性変形の初期値設定を行い, 締固め時の埋め戻し土の初期状態を再現した.

4-1.時間依存変形解析の結果と考察

カルバート中央の鉛直方向たわみを図3に示した.水平 方向の変位の時間推移は,高さ方向の変位のそれと同じ 傾向を示したため,ここでは省略する.

土粒子せん断剛性を無視することで, 土粒子骨格の構造

図1 設計構造図

表1 部材緒元							
部材緒元		А			В		
許容圧 縮応力度	部材	厚さ (cm)	P <i>in</i> (%)	P <i>out</i> (%)	厚さ (cm)	P <i>in</i> (%)	P <i>out</i> (%)
33%	上床版	43	0.77	0.63	43	0.77	0.63
	下床版	52	0.33	0.5	52	0.73	0.48
	側壁	45	0.87	0.56	45	0.38	0.58
50%	上床版	32	1.38	1.06	30	1.5	1.2
	下床版	36	0.42	0.94	32	1.69	1.28
	側壁	33	1.52	1.03	33	0.61	1.18
66%, 80%	上床版	26	2.08	1.54	24	2.42	2.08
	下床版	27	2.22	1.96	24	3.13	2.21
	側壁	27	0.74	1.63	27	0.74	1.78
*	4	- 現外安系 土かぶり 5m				0 5m	

キーワード: RC ボックスカルバート, 圧縮クリープ, ひび割れ, 引張クリープ, 土圧, 非線形解析 連絡先 〒113-8656 東京都文京区本郷7丁目3番1号 東京大学工学部1号館406 TEL03-5841-6146 変形への追随性を高めた場合, 土圧作用 66%, 80%において構造物に大きな時間依存変形の進行が発生し, A では, 上床版隅各部の破壊により崩壊した. 一方, 地盤の緩みに対して地盤側も抵抗する場合には(構造変形に応じて土圧が変化する:図 4), 構造側の変形の進行は大きく拘束されることが分かる. Aの 66%, 80%ではたわみ量が小さいのに対して, Bの 66%, 80%のものはたわみ量が大きい. これは, B 設計の方が A 設計より部材の厚さが薄く, 隅各部付近の強度が小さくなることが, その理由である.

地盤-構造の相互作用を,耐震設計のみならず,地下 構造物の常時設計にも適用することで,静止土圧に対する コンクリートの圧縮応力規制を現行の水準から上方修正す ることが可能と考えられる.ただし,常時地下水圧が支配的 な場合には,このかぎりではない.

4-2. せん断変形解析の考察

さらに、地盤との一体解析を行ったもの(B)に、図5に示

すように,水平方向へ地盤要素の上から強制変位をかけ, 構造物の最大せん断変形と,地盤の水平変位に対する水 平方向最大反力を求めた(表 2).

破壊の形態は下床版隅各部上部のおける曲げ破壊であ り,最大せん断変形と水平合計荷重はそれぞれで異なった. 時間依存変形後において,圧縮側コンクリートは剛性の低 下とピークひずみの増加が見られ,曲げ耐力は単純には減 少しない.

耐震性能は長期の変形前,変形後で大きくは変化せず, 初期の耐震性能照査で変形後の耐震性能を十分推定す ることが可能といえる.

5. まとめ

構造のクリープ応答が長期作用土圧に有為な変化をもたら すことを,地盤ー構造の相互作用を長期時間依存性解析 で考慮することで示した.あわせて初期土圧に対する構造 応力の制限を上方修正できる可能性を示唆した.

表 2-最大せん断変形と水平合計荷重

	A			В				
	供用直後		供用後 100 年		供用直後		供用後 100 年	
許 圧 応 度	最 せ 断 形 (cm)	水平 最大 (KN)	最 せ 断 形 (cm)	水平 最大 荷重 (KN)	最 せ 断 形 (cm)	水平 最大 (KN)	最 せ 断 形 (cm)	水平 最大 (KN)
33%	7.74	4.81 E+05	8.1	4.94 E+05	8.33	5.00 E+06	7.54	4.77 E+05
50%	6.68	4.26 E+05	6.85	4.30 E+05	6.79	4.38 E+05	6.46	4.16 E+05
66%	5.64	3.90 E+05	5.24	3.63 E+05	8.71	4.41 E+05	8.95	4.57 E+06
80%	5.06	3.61 E+05	5.39	3.21 E+05	8.93	4.51 E+05	9.12	4.42 E+05

参考文献

 Maekawa, K., Pimanmas, A. and Okamura, H., Nonlinear Mechanics of Reinforced Concrete, Spon Press 2003.

2) El-Kashif, K. F. and Maekawa, K., Time-dependent nonlinearity of compression softening in concrete, *Journal of Advanced Concrete Technology*, 2(2), JCI, 2004.

3) 久末賢一他, ひび割れを含む RC 部材の平均引張剛性 の経時変化と乾燥収縮の影響, 土木学会第 59 回年次学 術講演会, 2005.

4)半井健一郎他,小型 RC 供試体による高応力曲げクリー プ実験と解析,土木学会第59回年次学術講演会,2005.
5)牧 剛史他,液状化を生じる地盤中における RC 杭 基礎の非線形応答に関する研究,液状化地盤中の杭の 挙動と設計法に関するシンポジウム,地盤工学会,2004.12.