モルタルの塑性粘度に及ぼす加圧履歴の影響

石川島建材工業(株) 正会員 伊達 重之 同上 正会員 室賀 陽一郎

1. はじめに

高流動コンクリートや高強度コンクリートは粘性が高 く,一般のコンクリートの比べてポンプ圧送が困難である うえ,圧力によってコンクリートのフレッシュ性状が大き く異なる場合がある。このため施工には注意が必要である。 本研究では,非排水方式の加圧容器1)を用いて,モルタ ルの加圧の有無による塑性粘度の変化に及ぼす,シリカフ ューム添加および練混ぜ方法の影響の調査を目的とした。

2. 実験概要

2.1 使用材料および配合

使用材料を表 - 1 に示す。混和材の添加方法は内割置換 とした。また,モルタルの砂セメント比(S/C)はすべて 2.5 とした。 練混ぜ条件と水準を表 - 2 に示す。

2.2 練混ぜ

練混ぜには容量が20リットルのホバートミキサを用い, 練混ぜ時間は一括練混ぜ・分割練混ぜともに 105 秒間とし た(図-1参照)。また,各配合条件におけるモルタルは, JIS R 5201 に従って測定したフロー値(以下"15打フロ -値 "と略す) が 230 ± 10mm となるように, それぞれ高性 能減水剤の添加率を調整した。

また,モルタルの空気量が4±1.5%となるように,必 要に応じて消泡剤を添加した。

2.3 実験手順と評価項目

実験手順を図 - 2 に示す。静的加圧は,内径 200mm の加

圧ブリーディング試験用容器にモルタルを 7 リットル充填し,実際のポンプ圧送時に想定される最大の圧力 (5N/mm²)で加圧した。

加圧前後において,15 打フロー値ならびに塑性粘度を測定した。このときの作業に要する時間はおおよそ 15 分間であった。なお,塑性粘度は羽根沈入型粘度計2)によって求めた。

また,実施工を想定して,練上り後から20分間放置した場合についても合わせて実験を行った。塑性粘度 に及ぼす加圧の有無の影響は, η_{P1}/η_{S} (静置なしの場合)および η_{P2}/η_{S} (静置ありの場合)で評価した。

3.実験結果および考察

実験結果を表 - 3~4ならびに図 - 3~5に示す。

すべての配合条件において、加圧によってモルタルの流動性は低下し、塑性粘度は増加した。

シリカフュームをセメントの一部と置換することによって、練上りの塑性粘度および加圧後の粘度の増加が、

表 - 1 使用材料

セメント	O	普通ポルトランドセメント	密度:3.16g/cm ³
混和材	Sf	シリカフューム	密度:2.20g/cm³
細骨材			密度:2.60g/cm³, 吸水率1.54%
混和剤	Ad	ポリカルボン酸系 高性能AE減水剤	-

表 - 2 練混ぜ条件と水準

練混ぜ方法	一括,分割
W/P(%)	35, 40, 45
Sf/P(%)	0, 5, 10

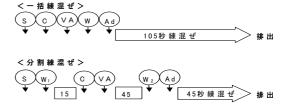


図 - 1 練混ぜ方法

図 - 2 実験手順

キーワード モルタル,塑性粘度,加圧,分割練混ぜ

連絡先 〒252-1121 神奈川県綾瀬市小園 720 石川島建材工業(株) TEL 0467-77-8554 FAX 0467-77-4314

	K C MARK (III E G C)											
	Ad/P (%)	Sf/P (%)	15打	フロー値((mm)	塑性粘度(Pa·s)						
N/P (%)			加圧前	前 加圧後 加圧なし		加圧前	加圧後 加圧なし					
			0 m in	20 min		0 m in	20 m in					
35	0.95		235	220	234	38	57	38				
40	0.55	0	231	197	210	20	35	25				
45	0.20		223	204	212	12	14	13				
35	0.95		235	220	234	38	57	38				
	1.10	5	234	214	227	20	32	30				

表-3 実験結果(静置なし)

練 混 ぜ 方 法	W/P (%)	Ad/P (%)	Sf/P (%)	加圧前	加圧後	加圧なし	加圧前	加圧後	加圧なし	
				0 m in	20 min		0 m in	20	20 m in	
	35	0.95		235	220	234	38	57	38	
	40	0.55	0	231	197	210	20	35	25	
一括	45	0.20	١	223	204	212	12	14	13	
10		0.95		235	220	234	38	57	38	
	35	1.10	5	234	214	227	20	32	30	
		1.35	10	228	213	210	16	20	19	
	35	1.00	0	240	220	231	25	39	38	
	40	0.68		240	208	217	10	14	13	
分割	45	0.30		221	204	214	7	11	10	
刀削		1.00		240	220	231	25	39	38	
	35	1.20	5	225	198	217	16	24	23	
		1.45	10	226	208	213	15	20	18	
•	•		•	•	•	•	!		•	

それぞれ低減されることが確認された。また,分割練混ぜに よっても同様な効果があることが確認された。また、分割練 混ぜによって若干モルタルの降伏値が大きくなるため,フロ ー調整に要する高性能 AE 減水剤添加量は一括練混ぜに比べ て多くなった。一方,一括練混ぜによって製造したモルタル は、W/P が小さい配合ほど、加圧後の塑性粘度の増加が大き い。

実験終了時において,加圧作用によって搾り出されたとみ られる水が容器内のモルタル上面で確認された。したがって、 シリカフュームおよび分割練混ぜの場合で加圧による塑性 粘度の増加が抑制されたのは,モルタルの保水力の向上が寄 与しているものと推察される。

練混ぜ直後に加圧した場合に比べて、静置したのち加圧し た場合のほうが,加圧による塑性粘度の増加が大きくなった のは, セメントの初期水和による粒子形状の変化と, モルタ ルのブリーディングの影響によるものと考えられる。

4.まとめ

加圧によるモルタルの塑性粘度の変化に及ぼす混和材お よび練混ぜ方法の影響に関する今回の実験の範囲から,以下 の知見を得た。

- 1) セメントに対して内割でシリカフュームを添加すること により、加圧後の塑性粘度の増加を小さくすることが確 認された。
- 2) 一括練混ぜによって製造したモルタルは , W/P が小さい 配合ほど,加圧後の塑性粘度の増加が大きい。
- 3) 分割練混ぜによって,加圧後の塑性粘度の増加を抑制で きることが確認された。

表-4 実験結果(静置あり)

44 19	W/C (%)	Ad/P (%)	15打	フロー値	(m m)	塑性粘度(Pa·s)		
練混 ぜ 方法			加圧前 加圧後		加圧なし	加圧前	加圧後	加圧なし
/3 /24			0 m in	40 m in		0 m in	40 m in	
	35	0.90	231	184	218	37	65	37
一括	40	0.55	224	191	190	14	37	25
	45	0.20	222	200	202	10	22	17
	35	1.05	236	209	215	22	41	34
分割	40	0.68	229	195	202	11	18	17
	45	0.30	221	202	207	6	12	11

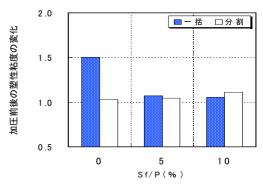


図 - 3 加圧による塑性粘度の変化に及ぼす シリカフューム添加の影響

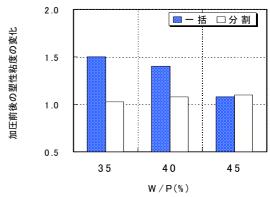


図 - 4 加圧による塑性粘度の変化に及ぼす分割 練混ぜの影響(静置なし)

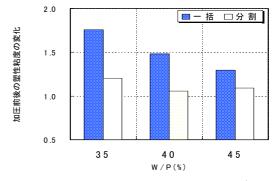


図 - 5 加圧による塑性粘度の変化に及ぼす分割 練混ぜの影響(静置あり)

参考文献

- 1) 横井謙二ほか:高流動コンクリートのポンプ圧送時の性状変化に及ぼす高性能 AE 減水剤の影響, 土木学会第52回年 次学術講演会概要集 V , p.p.902~903 , 1996
- 2) 室賀陽一郎ほか: モルタルの粘性評価試験装置の開発, 土木学会年次学術講演概要集, Vol.55, 部門5, V-406, 2000