気象観測データを用いたコンクリート舗装版上下面温度差の試算

1.はじめに 現在,コンクリート舗装の版厚は輪荷重応
力と温度応力に基づいた版縁部での疲労解析により設
計されている.このとき,温度応力はそり拘束係数,コ
ンクリートの弾性係数,線膨張係数,版上下面の温度差
の関数で求められ,設計期間内における温度差(上面温
度-下面温度, -9~19℃)の発生頻度は, 版厚が 15cm か
ら 30cm までの 6 パターンのコンクリート版に対し,「温
度差の大きい地域」と「温度差の小さい地域」の2地域
が設定されているのみである. これは, 亜寒帯から亜熱
帯までの幅広い気候分布を有する日本を単純に二分し
て捉えることであり、合理的ではない.しかし、これを
実験的に確認することは、膨大な費用と労力を要するた
めに容易ではない.そこで本研究では,拡張 AmeDas デ
ータを用いて比較的容易に算出できる一次元の非定常
熱伝導方程式を用いた椎名ら ¹⁾ の舗装体内温度推定手法
を用い、気温および日射量で分類した札幌から那覇まで
の主要 7 都市に版厚 30cm のコンクリート舗装を設置し
た場合の温度差の頻度を試算した.

2. 解析モデル 椎名らは式(1)に示す一次元の熱伝導方 程式に対し、舗装表面での気象作用による大気との境界 条件を式(2)のように設定し¹⁾、降雨が無い場合の気象デ ータを用いて求めた解析結果と実測結果は良く一致し ていたことを示した²⁾.

$$\kappa^2 \frac{\partial^2 T(z,t)}{\partial z^2} = \frac{\partial T(z,t)}{\partial T}$$
(1)

$$K\frac{\partial T(0,t)}{\partial z} + q_{con} + q_{sol} + q_{sky} = 0$$
⁽²⁾

ここに、T: 任意の深さにおける舗装体内温度(\mathbb{C}), z: 舗装表面からの深さ(m), K: 舗装材料の熱伝達率 (W/m/K)、 κ^2 : 舗装材料の温度拡散係数(kg/m³)、C: 舗装 材料の比熱(J/kg/K), t: 時間(hr), q_{con} : 対流熱伝達量(W/m²), q_{sol} : 対流熱伝達量(W/m²), q_{sky} : 正味地球放射量(W/m²) である. なお, $q_{con} \sim q_{sky}$ の具体的な算出方法については 参考文献 1)を参照されたい. なお,本研究では、式(1)

東京農業大学	正会員	竹内 康
東京農業大学	正会員	小梁川雅
東京電機大学	正会員	松井邦人

表-1 熱伝導解析の条件

	熱伝達率	Κ	2.60	W/(m*K)		
Co HE	温度拡散係数	κ^2	9.85E-07	m ² /s		
CO. //X	層厚	h_{c}	0.30	m		
	初期温度	T(z,0)	20.0	°C		
	熱伝達率	Κ	1.16	W/(m*K)		
上層	温度拡散係数	κ^2	5.46E-07	m ² /s		
路盤	層厚	h_{ub}	0.20	m		
	初期温度	T(z,0)	20.0	°C		
	熱伝達率	Κ	2.00	W/(m*K)		
下層	温度拡散係数	κ^2	9.33E-07	m ² /s		
路盤	層厚	h_{lb}	0.20	m		
	初期温度	T(z,0)	20.0	°C		
	熱伝達率	Κ	0.60	W/(m*K)		
敗亡	温度拡散係数	κ^2	3.62E-07	m ² /s		
	層厚	h_{sg}	0.30	m		
	初期温度	T(z,0)	20.0	°C		
対	流熱伝達率	h	5.8	W/m ² /K		
	吸収率		0.9	-		
	放射率	3	0.9	-		
Stefan-Boltsman定数		σ	5.67E-08	$W/m^2/K^4$		
	固定温度 T		20	°C		
	節点間隔		節点間隔 <u>⊿x</u>		0.01	m
断	熱限界深さ	ze	1	m		
	時間間隔	Δt	300	S		

を後退差分法により求め、マトリックスの計算にはガウ スの消去法を用いた.

材料定数や舗装構造を含んだ解析条件は表-1に示すと おりで、気象データは日本建築学会より出版されている 拡張 AMeDAS データの標準年データを用いた.

3. 解析対象地の選定 AMeDAS の設置数は北海道から 沖縄までで1311 点あるが、本研究では1311 点のうち都 道府県庁所在地 47 箇所をピックアップし、標準年デー タの比較を行った. なお、標準年データの比較では、熱 伝導解析結果に比較的大きな影響を及ぼす気温、全天日 射量をとりあげて年変化をグラフ化し、線形の類似して いる地域毎に分類した. その結果、図-2 に示すように緯 度方向に6つの地域に分類できた. このことから、各地 域の代表都市を選定し、熱伝導解析を実施した. なお、 地域番号4の範囲が非常に大きくなったことから、東京 と福岡の2つを代表都市として選定した.

Key Words: コンクリート舗装,版上下面温度差,温度応力,舗装設計 連絡先:〒156-8502 東京都世田谷区桜丘 1-1-1 TEL: 03-5477-2342 FAX: 03-5477-2620 4. 解析結果および考察 熱伝導解析によって得られた 7 都市1年分(1/1~12/31)の5分毎の舗装体内温度データか ら,1時間毎のコンクリート版上下面の温度を抽出して 温度差(上面温度-下面温度)を求め,その発生頻度を 舗装設計施工指針と同様に温度差が正の場合と負の場 合を個別に算出した.つまり,温度差が正・負のときの 発生頻度の合計は各々1.00となる.ただし,冬期の積雪 が見込まれる札幌,仙台,新潟の3都市については1~3 月の解析結果を除外し,その他の都市については初期温 度の影響を取り除くために,1/1から1週間分のデータ を除外した.また,本研究で扱った解析モデルは,降雨 の影響を考慮していないため,解析結果には潜熱輸送に よる温度低減効果が見込まれていない.そこで,表-2に 示すように,1年間全く雨が降らないと想定した場合

(Case1)と降雨日以降2日間の解析結果を除くことで潜 熱輸送の影響を除外した場合(Case2)の2種類の頻度解 析結果を求め,設計施工指針の値と比較した.

表-2の Big, Small は設計施工指針の温度差の大きい地 域と小さい地域での頻度分布を示している.この表から わかるように,正の温度差とその発生頻度は緯度が低く なるにつれて大きくなり,逆に負の温度差はと頻度は小 さくなる傾向にある.また,降雨がある場合は Casel よ りも温度差が小さい部分の発生頻度が大きくなると予 想されるが, Casel と Case2 では全体的に顕著な差が認 められなかった.このことから,降雨が発生頻度に及ぼ す影響はそれほど大きくはないものと予想される. さらに,設計施工指針の値と比較すると,コンクリー ト版の疲労解析結果に大きな影響を与える正の温度差 は,解析結果の最大値の平均を 25℃とした場合に 6~ 10℃の差がある.今回の熱伝導解析はコンクリート版厚 が 30cm の場合のみであり,断熱限界深さが 1m と比較 的浅いことから明言はできないが,コンクリート舗装版 に発生する温度差は,設計用値よりも実際には大きくな っている可能性がある.これについては,今後,既存の 測定データなどを用いて検討していきたい.

参考文献 1)椎名貴快,松井邦人,T.F.Smith:地上気象観測データを 用いたアスファルト舗装の内部温度推定,舗装工学論文集,Vol.2, pp.105-112,1997.2)椎名貴快,松井邦人,金井利浩:気象因子を考慮 した舗装内部温度の推定について,土木学会第53回年次学術講演会, V-43, pp.86-87,1998.

図-2 拡張 AMeDAS データを用いた地域分類

	∆Temp.	Sapporo		Sendai		Niigata		Tokyo		Fukuoka		Kagoshima		Naha		Big	Small
		Case1	Case2	Case1	Case2	Case1	Case2	Case1	Case2	Case1	Case2	Case1	Case2	Case1	Case2	Dig	Sman
	29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	27	0	0	0	0	0	0	0	0	0	0	0.001	0	0	0	0	0
	25	0	0	0.001	0.001	0.001	0.003	0.002	0.001	0.003	0.002	0.007	0.007	0.005	0.005	0	0
	23	0.001	0.008	0.007	0.006	0.025	0.048	0.013	0.016	0.021	0.022	0.024	0.040	0.029	0.035	0	0
	21	0.033	0.048	0.021	0.024	0.052	0.082	0.026	0.028	0.040	0.042	0.036	0.060	0.041	0.050	0	0
	19	0.054	0.053	0.038	0.037	0.055	0.067	0.035	0.036	0.054	0.058	0.043	0.062	0.041	0.051	0.012	0
	17	0.057	0.066	0.041	0.043	0.057	0.068	0.041	0.041	0.064	0.080	0.048	0.060	0.047	0.055	0.02	0
	15	0.073	0.088	0.049	0.054	0.059	0.060	0.044	0.044	0.060	0.063	0.050	0.065	0.053	0.067	0.038	0.007
	13	0.051	0.065	0.056	0.064	0.060	0.075	0.063	0.069	0.064	0.068	0.071	0.091	0.066	0.078	0.04	0.025
	11	0.088	0.096	0.072	0.081	0.071	0.063	0.071	0.080	0.074	0.077	0.070	0.067	0.075	0.085	0.045	0.053
	9	0.074	0.068	0.082	0.083	0.073	0.080	0.088	0.094	0.083	0.097	0.087	0.094	0.081	0.084	0.08	0.08
	7	0.106	0.101	0.109	0.122	0.084	0.079	0.118	0.134	0.091	0.095	0.091	0.083	0.095	0.098	0.105	0.115
	5	0.120	0.096	0.136	0.133	0.127	0.103	0.131	0.132	0.102	0.101	0.126	0.103	0.104	0.096	0.125	0.14
	3	0.163	0.151	0.164	0.160	0.153	0.114	0.145	0.140	0.144	0.126	0.145	0.121	0.145	0.121	0.185	0.21
	1	0.180	0.160	0.224	0.193	0.185	0.158	0.221	0.187	0.200	0.170	0.201	0.148	0.219	0.173	0.35	0.37
	-1	0.105	0.169	0.191	0.152	0.135	0.250	0.256	0.228	0.233	0.204	0.267	0.219	0.466	0.427	0.39	0.48
	-3	0.172	0.288	0.262	0.238	0.242	0.417	0.290	0.236	0.314	0.286	0.319	0.307	0.454	0.472	0.32	0.38
	-5	0.257	0.319	0.234	0.243	0.311	0.221	0.266	0.280	0.295	0.290	0.237	0.241	0.079	0.101	0.23	0.12
	-7	0.283	0.194	0.235	0.275	0.288	0.107	0.170	0.224	0.145	0.196	0.152	0.199	0	0	0.055	0.02
	-9	0.166	0.029	0.078	0.091	0.023	0.005	0.018	0.031	0.013	0.025	0.025	0.034	0	0	0.005	0
	-11	0.017	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	-13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

表-2 コンクリート版上下面温度差の年間発生頻度の解析結果