塩害の影響を受ける鉄筋コンクリートの腐食速度解析モデルの提案

金沢工業大学大学院工学研究和	科 学生会員	長谷川裕介
金沢工業大学 環境・建築学部	正会員	宮里心一
鹿島建設(株) 技術研究所	非会員	親本俊憲
鹿島建設(株) 技術研究所	正会員	横関康祐

1.はじめに

多くの鉄筋コンクリート部材は,重要な社会基盤に用い られる.そのため,安全で快適に供用されなければならな い.ただし,広範囲への社会貢献を施すためには,厳しい 環境条件下に暴露される鉄筋コンクリート構造物もある. この場合,特にひび割れ部では,塩害により鉄筋腐食が生 じている部材もある.ここで,性能規定型設計においては, この様な劣化も考慮して,長期にわたる部材性能を照査す る必要がある.しかしながら,曲げひび割れなどの欠陥を 有する部材を対象として,進展期に対するマクロセル腐食 速度を解析するモデルは未だ充分に検討されていない.

以上の背景を踏まえ著者らは,主にひび割れ等の欠陥を 有する鉄筋コンクリート部材に生じる塩化物腐食の速度を 予測する基本モデルを図1の流れで構築している.その一 環として本研究では,表1に示すとおり,図1中の2重線 の因子を Input Data とし,腐食速度を Output Data とす るモデルを提案する.

2.モデルの構築

2.1 鉄筋要素の設定

マクロセル腐食速度とミクロセル腐食速度を区別して解 析するため,鉄筋を要素に分割する¹⁾.すなわち,図2に示 すとおり,一本の鉄筋は,複数の鉄筋要素の連続体として 考える.また,アノードとカソードが,単一の鉄筋要素内 に存在する場合を「ミクロセル」とし,一方異なる鉄筋要 素に跨る場合を「マクロセル」とする.

2.2 分極曲線の組合せによる腐食電流の解析方法

アノード・カソード分極曲線とマクロセル腐食電流およ びミクロセル腐食電流の関係を,図3にて説明する.なお, ここで代入する分極曲線は,測定時に生じる IR ドロップを 考慮し,鉄筋表面で反応する分極特性に起因する値を与え た.

(a)図に示すとおり,位置的要因により,塩化物イオンや酸素の供給条件が異なるため,鉄筋要素と鉄筋要素で

は,分極曲線の傾きが変化する.さらに,アノード分極曲 線とカソード分極曲線の交点が電気化学的な平衡状態であ り,この電流値で腐食は進行する.したがって,(b)図に示 すとおり,同一鉄筋要素内のミクロセル電流が解析される. 一方,(c)図に示すとおり,異なる鉄筋要素に跨ってアノー ドとカソードが形成されるマクロセルの場合,鉄筋要素

・ 間のコンクリート抵抗や分極抵抗に伴う電位ロスを 考慮する必要がある.なお,以上の方法で算定された腐食 電流について,鉄筋要素 i をカソードとし,鉄筋要素 j を アノードとする場合を, I_{1(1,1)}とする.

キーワード:塩害,腐食速度解析モデル,分極曲線,マクロセル,ミクロセル 連絡先:〒921-8501 石川県石川郡野々市町扇が丘7-1 TEL 076-248-1305 FAX 076-294-6713 2.3 酸素供給量を考慮したカソード電流の制御方法

任意の鉄筋要素に供給される酸素量を考慮して,カソード電流の最大値を制限した.すなわち,次式に示すとおり, 鉄筋要素 i がカソードとなる腐食セルにおいて,ミクロセルおよび複数のマクロセルに対する全カソード電流の和を 制限した.

$$\alpha \times \left(\sum_{j=1}^{n} I_{1(i,j)}\right) \leq Ji \times 4 \times 96500 \quad (1)$$

:減衰係数(0< <1),
Ji:要素iへの酸素供給量(mol/cm²·sec)

2.4 鉄筋要素間抵抗を考慮した腐食電流の分配方法

オームの法則によれば,並列回路が存在する場合,各回 路の電気抵抗に反比例して電気は流れる.このことからミ クロセルやマクロセルなどの複数の回路が存在する場合, 各回路のアノードとカソード間の電気抵抗の逆数に比例し て,カソード電流を分配した.

 $I_{2(i,j)} = \frac{\frac{1}{R_{i,j}} \times \alpha \times \left(\sum_{j=1}^{n} I_{1(i,j)}\right)}{\sum_{j=1}^{n} \frac{1}{R_{i,j}}} \qquad \begin{array}{c} (2)\\ R_{i,j} & \vdots 要素iからj間の抵抗,\\ I_{2(i,j)} & \vdots 要素iからj間のカソード電流 \end{array}$

3.1 実験概要

供試体の概要を図4に示す.図2に示すとおり,鉄筋軸 方向に要素分割された腐食電流の解析値と,実験により測 定された実測値を直接比較するため,分割鉄筋¹⁾を埋設した. また,28日間の初期養生後,49日間の塩害促進暴露(3%あ るいは15%の食塩水噴霧に1日間+RH60%あるいはRH90%乾 燥気中に2.5日間)を行った.また供試体は,ひび割れを 模擬したスリットを導入した供試体および導入しない供試 体を作製した.すなわち本研究では,表2に示す5ケース を対象として実験値と解析値を比較とした.

3.2 解析の例

ケース3の解析例を示す.先ず図5に示す通り,前述の 鉄筋要素毎のアノード分極曲線とカソード分極曲線の重ね 合わせを行った.次に表3に示すとおり,文献²⁾に基づく 酸素供給量より算出した最大カソード電流を考慮した.最 後に,分極抵抗とモルタル抵抗を考慮し,カソード電流を 再分配し,腐食電流を求めた.

結果を図6に示す.ここでは,同様の手法で解析したケ ース1の結果も記す.これによれば,スリットの存在によ り腐食電流密度が高くなることが確認される.このことは, 既往の実験や調査による知見と同様である.

3.3 解析結果と実験結果の比較

図7に全5ケースにおける解析値と実測値の関係を示す.

これによれば,ケース4の結果を除けば,解析値と実測値

【参考文献】

- 1) 宮里心一, 大即信明, 小長井彰祐, 分割鉄筋を用いたマクロセル電流測 定方法の実験的・理論的検討, コンクリート工学年次論文集, Vol.23, No.2, pp.547-552(2001)
- 2)松村卓郎,宮川豊章,小林和夫,コンクリートの酸透過性に関する基礎 的研究,土木学会第43回年次学術講演会講演概要集,pp.258-259(1988)