アルカリ骨材反応によるひび割れのシミュレーション

香川大学大学院	学生会員	〇岡 考	
(株)四国総合研究所	正会員	横田	優
香川大学工学部	正会員	吉田	秀典
香川大学工学部	正会員	松島	学

1. はじめに

既往の研究から反応生成物の膨張量は, コンクリ ート中のアルカリ量や反応性骨材量, 水の供給が影 響することがわかっている. 膨張量を因子として数 値解析を行うことで時間経過に伴うコンクリート構 造物の損傷メカニズムを解明できると考えられる. アルカリ骨材反応によるひび割れはコンクリート内 部の微小ひび割れの存在による局所的な損傷に影響 される. 数値解析では上述の不均質性を考慮せずに 現象の挙動をシミュレーションすることができない. しかし, 数値解析モデルとして局所的な違いをモデ ル化することは不可能である.

本研究は粗骨材の不均質性を考慮した数値解析モ デルを構築し,実構造物の解析を行った.さらに, アルカリ骨材反応によって損傷を受けたコンクリー ト構造物の現場調査を行い,数値解析との比較検討 を行った.

2. 数値解析モデル

数値解析で現実的なひび割れを求めるには、コン クリート特有の不均質性は無視できない.数値解析 では微小ひび割れのモデル化,全骨材のモデル化に よる膨大な要素数の計算という問題が生じることか ら、以降に説明するモデルを提案する.アルカリ骨 材反応ではコンクリート中に膨張する領域と膨張し ない領域ができる.引張ひび割れの発生にはこの各

図-1 等価ひび割れ要素モデル

キーワード アルカリ骨材反応,数値解析,等価ひび割れ要素,現場計測 連絡先 〒761-0396 香川県高松市林町 2217-20 香川大学大学院工学研究科

図-2 引張軟化曲線のモデル

領域の相互作用が影響する. 提案するモデルでは、 コンクリート中で膨張する領域に粗骨材を集中させ, 残りの領域にモルタルが存在すると仮定した.提案 モデルを図-1の中央に示す.本研究ではコンクリー トを粗骨材の集合体とモルタルの2 つで表した等価 ひび割れ要素モデルを提案した. 粗骨材の集合体を 膨張要素に、モルタルを非膨張要素に置き換え、膨 張要素と非膨張要素の相互作用からアルカリ骨材反 応によるひび割れを求める. 膨張要素は集中した粗 骨材がモルタルで密着したものとした. 膨張要素に ひび割れが生じた場合は粗骨材を密着させるモルタ ルにひび割れが生じ,集合した粗骨材が分離してい ると考える.これはひび割れが粗骨材に沿って発生 する現実の挙動に基づいている. 膨張要素の強度が モルタルの強度に依存することと、非膨張要素がモ ルタル要素であることから全要素はモルタルの強度 に依存する. モルタルの強度がコンクリートの強度 に大きく影響することから, 全要素にコンクリート の材料特性を持たせた.引張ひび割れは破壊力学に 基づいた,図-2に示す引張軟化曲線を仮定した.全 要素に占める膨張要素の割合は実配合を考慮し、全 体積の 40%に設定した. 全要素内における膨張要素

の位置は乱数を用いて決定し、均一にばらつきをも つ粗骨材の配置を表現した.反応生成物の吸水膨張 現象は膨張要素に膨張ひずみを与えることで表現し た.膨張ひずみはモルタルバー法で有害とされる膨 張量の 0.10%を参考に、コンクリート構造物にとっ て有害と予測される 0.20%に設定した.

3. 現場計測および数値解析

香川県内の橋脚に生じたアルカリ骨材反応による ひび割れを調査した.図-3 は橋脚に生じたひび割れ の写真とスケッチである.格子状のひび割れが卓越 し,ひび割れから鉄筋の錆汁,白色ゲルの滲出も見 られた.現場計測ではひび割れをスケッチし,格子 で囲まれた部分の面積を求めた.これを等価な真円 の面積とし,直径を等価直径と定義し,ひび割れ性 状を評価した.大きさの全く異なる二つの橋脚につ いて現場調査も含めた結果を図-4 に示す.両橋脚と もデータの大半は 25cm~35cm の範囲に収まり,平 均値がおのおの 30cm と 32cm となり, 2cm しか変わ らない.このようにアルカリ骨材反応によるひび割 れ性状は構造物の寸法に影響されないと考えられる.

提案するモデルを用いて本橋脚の解析を行った. 図-6 に本橋脚の数値解析のモデルを示す.数値解析 のモデルでは、本橋脚のコンクリート表面から鉄筋 までの自由領域をモデル化し、奥行きを10cmとした. 図-5 に示すように奥行き方向は鉄筋に拘束されてい る.ひび割れは最も応力の集中しやすい鉄筋に沿っ た面で発生し、自由領域内ではほぼ発生しないと考 えた.そこで、奥行方向の膨張量を高さ、幅の方向 に比べ微小であるとして扱う異方性材料とした.下 面は地中の基礎を考慮し、自由度を完全拘束した.

図-3 ひび割れのスケッチ

解析の結果,図-7のA,Bに示すような格子状のひ び割れが発生し,各等価直径の平均値も比較的現実 に近い値を示した.

