ひび割れ測定のための光ファイバーセンサーの設置方法の実験的検討

清水建設株式会社	正会員	○中谷	篤史
清水建設株式会社	正会員	奥野	哲夫
清水建設株式会社	正会員	若林	成樹

1. はじめに

都市ガス岩盤貯蔵施設の技術開発 1)において、施設の健全 性を検証・監視する技術が重要となる。岩盤貯蔵施設(図1) は、高圧ガス(最大 20MPa)の運転(貯蔵・払出し)により 周辺岩盤および気密構造体に 10,000 回の繰返し圧力が作用 するため、引張応力により裏込めコンクリートにひび割れが 発生する。ひび割れが特定箇所に集中せず分散するよう設計 する必要があり、それらを検証・監視するため、光ファイバ ーセンサーを用いて、ひび割れの測定方法について実験(静 的載荷・繰返し載荷)により検討した結果について報告する。

2. 試験方法

試験装置および試験体は、澤ら²の試験方法に準拠し、図2、図3に示す試験装 置、試験体を用いた。なお、鉄筋の両側に光ファイバーセンサー(4芯薄肉センサ ーケーブル((株)フジクラ製))を配置して、測定が可能なように改良した。

光ファイバーセンサーによるひずみの測定は「BOTDR」と呼ばれるブリルアン散乱 光の周波数がその地点のひずみによってシフトする原理を利用している(図4)。

光ファイバーセンサーの距離分解能が 1m であるため、直接コンクリートに埋設す るとひび割れ近傍にのみ局所的にひずみが集中して測定精度が低下する可能性があ る。そのため測定区間にスリーブ(カバー)を被せる事により光ファイバーセンサ ーとコンクリートとの付着をなくし、局所ひずみを測定区間に均等分布させ、平均 ひずみを測定できるようにした。また、スリーブの有効性を確認するためにスリー ブを用いない試験体も作成した。

試験のケースを表1に示す。静的試験は、スリーブの有無による光ファイバーセ ンサーの測定可能性の基本確認のために行った。繰返し試験は、引張載荷ひずみの レベルを裏込めコンクリートに発生が予想される最大ひずみ¹⁾の 3000 µ を中心に 4 段階に変化させて行った。

キーワード都市ガス岩盤貯蔵、健全性、光ファイバー、ひび割れ、繰返し、ひずみ 連絡先 〒135-8530 東京都江東区越中島 3-4-17 研究開発支援センター TEL. 03-3820-8414

ロードセル

図2

設置することによりひび割れ近傍の局所ひずみを光ファイバー測定区間に均等分布させることにより、平均 ひずみを測定することが出来たと考えられる。スリーブの無い試験体では、ひび割れ近傍の光ファイバーセ ンサーに局所的にひずみが集中するために測定が出来なかったと考えられる。今回のスリーブ有りの場合で は測定区間長が光ファイバーセンサーの距離分解能 1m より短いため、測定結果のひずみ値は、理論値の約 45%と小さくなった。

繰返し試験の結果を図6および図7に示す。図6は、引張載荷ひずみ3000μにおける1、100、10,000回

での光ファイバー測定区間のひずみ分布である。中央部で最大 ひずみが測定されている。図7は、引張載荷ひずみを変えた繰 返し回数と中央部のひずみの関係である。各ケースとも測定結 果に多少のばらつきは見られるが、10,000回の繰返し載荷を行 っても中央部のひずみは安定して測定できることを確認した。

4. まとめ

今回の試験結果により以下の点を確認した。

- ・スリーブの有効性 :局所ひずみを測定区間に均等分布さ せて平均ひずみの測定が可能
- ・10,000回での耐久性:繰返し載荷を行っても光ファイバー

センサーでひび割れ測定が

可能

今後は、測定区間長の違いによる光ファイバーセン サーでのひび割れ測定の可能性を確認するため、測定 区間長を変えた試験を行うとともに、光ファイバーセ ンサーで測定されたひずみから実際のひずみを推定す る方法を検討する予定である。

参考文献

 1) 社)日本ガス協会:平成14年度地方都市ガス事業天然ガス 化促進対策調査(都市ガスの岩盤貯蔵技術調査)事業報告書
2)澤、延藤、石塚、安部、田中:高ひずみ繰返し載荷が RC 部材に与える影響検討、土木学会第57回年次学術講演会、 V-471、2003.9

	表 1	試験ケースー	覧
--	-----	--------	---

	試験 スリ	スリーブ	引張載荷 ひずみ (µ)		ひずみ 振幅	試験体
			ε _{max}	ε _{min}	(μ)	番亏
静的		± 1	4600			No. 1
	静的	有り				No. 2
		無し				No. 9
繰返し			2500	1500	1000	No. 6
	有り	3000	1500	1500	No. 4	
		3500	1500	2000	No. 7	
		4000	1500	2500	No. 5	

図5 静的試験結果(中央部)

