密度可変固体トレーサを用いた流向流速計の開発

3. 計測結果の評価に関する検討

鹿島建設㈱	正会員	中嶌 誠門	鹿島建設㈱	正会員	田中	真弓
鹿島建設㈱	正会員	戸井田 克	㈱東芝	非会員	佐藤	光吉
岡山大学	正会員	西垣 誠	東 海 大 学	非会員	大江	俊昭

1.はじめに

高レベル放射性廃棄物の地層処分を行う際には,事前に地下水流動状況を正確に把握しておく必要があるこ とから,筆者らは,極低流速地下水の3次元流向流速を計測可能な計測装置(プロトタイプ)の詳細設計・製 作を実施した。本計測システムでは,拡散の影響を受けない固体トレーサを使用するが,計測目標下限と考え ている10⁻¹⁰ m/s 程度の低流速場においては,このトレーサ粒子のブラウン運動(熱運動する水分子の不規則な 衝突によって生じる浮遊粒子のランダム運動)の影響が計測結果の誤差要因となる可能性がある。そこで,2 次元の簡易なシミュレーションを実施し,固体トレーサのブラウン運動が本システムの計測精度に与える影響 度を予測するとともに,その影響度を低減するための対策を統計理論に基づき検討した。

2.ブラウン運動の影響評価

浮遊粒子同士の流体力学的な相互作用が無視できるような希釈なコロイド分散系では,粒子のブラウン運動 による挙動は一般にランジュバン方程式に従うことが知られている¹⁾。本シミュレーションでは,同方程式よ り導出した時系列の漸化式を使用し,計算ステップを0.1秒刻みとして,表-1に示す各ケースで計算を行った。 計算は1ケースにつき10回実施し,各時間ステップにおける見かけ速さ(初期位置からの移動距離/時間) の最大値をトレースしたものをそのケースの代表プロットとした。結果は図-1に示すとおりであり,いずれの ケースでも見かけ速さは1000秒経過時点で10⁻⁹m/s 未満であった。

以下では,上記の簡易計算結果をもとに,見かけ速さの時間依存性について検討する。ブラウン運動の軌跡 は各時間ステップにおけるランダムな変位べ 表-1 パラメータ設定

クトルの和で表現され,初期位置からの見か けの移動距離は中心極限定理にしたがう。す なわち,ブラウン運動する浮遊粒子の見かけ 速さは経過時間をtとして $1/\sqrt{t}$ に比例し,定 常な地下水流動に対し,プラウン運動の影響 は時間経過に伴い相対的に小さくなる。1000

ケース	1	2	3	4	5	6	7
トレーサ粒径(μm)	150	150	150	100	200	150	150
粒子密度(g/cm3)	1	1	1	1	1	0.9	1.2
トレーサ質量 (kg)	1.77E-09	1.77E-09	1.77E-09	5.24E-10	4.19E-09	1.59E-09	2.12E-09
溶媒温度()	50	10	30	50	50	50	50
水の粘度 (Pa•s)	0.55E-03	1.31E-03	0.80E-03	0.55E-03	0.55E-03	0.55E-03	0.55E-03
比較パラメータ	(標準)	溶媒	温度	トレー	サ粒径	粒子	密度

秒経過時点での見かけ速さは 10^{-9} m/s 未満であることから,対象流速の下限側(10^{-10} m/s)の計測に要する 2 日 (~ 1.7×10^{5} 秒)経過時の見かけ速さは 10^{-11} m/s のオーダーに低下すると推測される。

3. 流向流速算出に必要な計測回数の試算

次に,計測データに含まれるブラウン運動を始めとしたランダムノイズの影響を低減する方法について検討 する。ノイズ除去手段として,同じ計測を繰り返して得たデータをスタッキングする手法が広く用いられてお り,本項では,この手法を使って,所定の精度で真の流速を推定するために必要な計測回数について検討する。

ノイズを含む速度データから真の速度を統計的に推定するために,各軸方向における信頼区間の推定を以下のとおり行う。母集団の平均値(真値)µがサンプルデータ(計測値)の平均値(推定値) X を中心としたある区間に入る確率 を保証する 100 %信頼区間の下側・上側信頼限界は次式で決まる。

$$\overline{X} - t_{\frac{1-\alpha}{2}}(n-1)\frac{s}{\sqrt{n}}, \ \overline{X} + t_{\frac{1-\alpha}{2}}(n-1)\frac{s}{\sqrt{n}} \right] \qquad (1)$$

ここで,sは計測値の不偏分散 s^2 のルート,nはデータ数である。上式を変形して,信頼区間がある長さ*L*よりも小さくなるための条件を導くと次式(2)のようになる。

$$t_{\frac{1-\alpha}{2}}(n-1)\frac{1}{\sqrt{n}} < \frac{\gamma}{2\beta} \qquad \dots \qquad (2)$$

ここで, は s を平均値 X で割った変動係数, は設定区間長 L を平均値 X で割った長さ比(以下,設定区間比と呼ぶ)である。 ・ ・ の 3 パラメータを設定して上記の条件式を解くと,条件を満たすためのデータ数 n が求まる。つまり,所定の精度を得るために必要な計測回数 n は,信頼係数 を適切に選び,変動係数を計測過程で逐次算出し,要求精度から設定区間比 を与えることによって算出される。そこで,信頼係数

,及び,変動係数 をパラメータとして,必要な計測回数nを試算する。設定区間比 については,真の流 速の向きとオーダーの推定を設定根拠として =1(計測値が真の値の0.5~1.5倍範囲)とした(図-2参照)。

所定の精度を得るために必要な計測回数の算出結果を表-2 に示す。これより,例えば変動係数 30%の計測 データを使って,真の流速のオーダーを 95%の確率で推定するためには 4 回以上の計測を行えばよいことが分 かる。また,現実的な測定回数の上限を仮に 50 回とすると,データの変動係数が 100%以内であれば,地下 水流速のオーダーを 95%の確率で推定できることが読み取れる。

表-2 計測回数 *n* の算出結果 (=1 の場合)

信頼係数α 変動係数β	0.75	0.8	0.85	0.9	0.95	0.99	0.999
0.01	2	2	2	2	2	2	3
0.03	2	2	2	2	2	3	4
0.1	2	2	2	2	2	4	5
0.3	2	2	2	4	4	6	10
1	7	9	10	13	18	31	50
3	49	61	77	100	141	243	396
10	531	659	831	1085	1540	2658	4337
n 50のライン 注目ライン						4	

4.まとめ

本稿では,極低流速地下水の3次元流向流速の計測を目的とした本システムにおいて,固体トレーサのブラウン運動が計測精度に与える影響の把握,およびその影響度を低減するための対策の検討を行った。その結果,本システムが対象とする10⁻¹⁰~10⁻⁵m/sの流速のうち,ブラウン運動の影響が最大となる下限側(10⁻¹⁰m/s)でも,現システムで問題なく地下水の流向流速を計測できることが分かった。ただし,原位置においては複雑な自然現象が計測精度に影響を与えると考えられるため,今後,実データに基づいた適用性の確認が必要である。 参考文献

1) 神山新一,佐藤明,「流体ミクロシミュレーション」,朝倉書店,1997