3-438

密度可変固体トレーサを用いた流向流速計の開発

2. プロトタイプの室内性能検証試験

鹿島建設㈱	制 正会員	田中	真弓	鹿島建設㈱		正会員	戸井田 克	
鹿島建設㈱	制 正会員	岩野	圭太	(株)東	芝	非会員	長井	敏
(株)東 き	き 非会員	鈴木	健彦	(株)東	芝	非会員	佐藤	光吉
岡山大学	2 正会員	西垣	誠	東海ナ	く学	非会員	大江	俊昭

1.はじめに

高レベル放射性廃棄物の地層処分を行う際には,地盤中地下水の流れによって核種が生物圏に運ばれる可能 性があるため,事前に地下水流動状況を正確に把握しておく必要がある。筆者らは,地盤中地下水の流れの実 データ取得に資するため,極低流速地下水の3次元流向流速を計測可能な機器を開発中であり,計測装置(プ ロトタイプ)の詳細設計・試作を行った。今回,本装置の計測性能を確認するため室内検証試験を実施したの で,その結果について報告する。なお,本研究は(財)エネルギー総合工学研究所の「平成16年度革新的実 用原子力技術開発公募事業」の成果の一部である。

2. プロトタイプの性能検証室内試験

開発中の3次元流向・流速計測装置では,10-10~10-5m/sの流速範囲を計測目標としている。そこで,製作 したプロトタイプを用いて,計測下限の10-10m/s,及び,計測上限の10-5m/s程度の流速計測性能を大気圧環 境下の室内レベルで確認した。具体的には,固体トレーサの移動状況を超音波センサとともにCCDカメラを 用いて2方向から計測・撮影し,データ解析を行って各固体トレーサの移動量・流速を算出した。なお,CCD カメラの観察結果は,超音波センサで得られた結果を評価するために使用した。また,計測範囲内の中央に超 音波速度を校正するための不動基準ターゲットを設け,このターゲット先端を計測結果表示軸の原点とした。

2.1 計測下限性能検証試験

恒温室内に試験装置(図1参照)を設置し,10 , 7 の低温状態で高粘性のシリコンオイル内に固 体トレーサを多数混入させ,沈降する固体トレー サの移動状況を開発中の流向・流速計のプロトタ イプセンサを用いて計測した。ストークスの法則 式を用いて予測した本試験状況下での沈降トレー サの終末速度は10⁻¹⁰~10⁻⁹m/sのオーダーである。

図 2 には,超音波センサと CCD カメラで得られた5 分間のトレーサ挙動計測結果の比較,超音波センサによる計測下限側の性能把握を目的とし

図1 計測下限性能検証試験状況

て恒温室温度7 の条件下で, CCD カメラの光源を消して 10 分間隔で4 回計測した際のトレーサ移動 速度,及び,結果表示軸を示す。なお,図中の矢印は流れの方向を表す。超音波センサと CCD カメラの結果 を比較すると,装置の取り付け精度に起因する絶対位置の誤差はあるものの,両者の相対移動軌跡は比較的よ く一致していることが分かる。また,トレーサ移動速度は Vu (XYZ 軸合成流速)で 5×10⁻⁸m/s 程度,比較 的計測精度の高い Vx-z (XZ 軸合成流速)で 10⁻⁹m/s オーダー後半のトレーサ移動速度が計測されている。

以上の結果から,超音波センサの計測精度は充分信頼できるものであり,超音波センサによる本開発での計 キーワード 放射性廃棄物,地層処分,流向流速計測装置,固体トレーサ,超音波センサ 連絡先 〒182-0036 東京都調布市飛田給 2-19-1 鹿島建設(株)技術研究所 TEL 0424-89-7081 測下限に設定している 10⁻¹⁰m/s オーダーの流速を計測することは可能と考えられる。なお,超音波センサと CCD カメラの移動距離検出精度は,CCD カメラが XYZ 軸方向に±15μm,超音波センサが X,Z 軸で±5μm, Y 軸で±40μm であった。

図2 計測下限性能検証試験におけるトレーサの移動軌跡,移動速度,及び,計測結果表示軸

2.2 計測上限性能検証試験

水槽を用いた試験装置(図3参照)にプロトタイプ を設置し,流向・流速が既知の条件下の水中に固体ト レーサを複数投入し計測を行った。下流側の排出水量 から算出した流速は約9×10⁻⁶~10⁻⁵m/s,水槽内のト レーサ挙動をデジタルビデオカメラで観察した結果 から推定した流速は約6×10⁻⁵~10⁻⁴m/s であった。

図4には,10分間隔で4回計測した際の超音波セ ンサとCCDカメラの計測結果から算出したトレーサ の移動速度と結果表示軸を示した。XYZ 軸合成流速 であるVuは,超音波センサで5.40×10⁻⁵m/s,CCD カメラでは5.25×10⁻⁵m/s であり,両者はほぼ一致 していると判断される。また,超音波センサ,及び, CCDカメラで捉えたトレーサ移動軌跡は,計測下限 性能検証試験と同様,装置の取り付け精度に起因する 絶対位置の誤差はあるものの,両者の相対移動軌跡に 関しては比較的よく一致していた。

以上の結果から,本開発で設定している計測上限 (10⁻⁵m/s)においても,超音波センサの計測精度は 充分信頼できるものであり,10⁻⁵m/sオーダーの流速 を超音波センサによって計測可能と考えられる。

3.おわりに

以上のように,室内試験で大気圧下のプロトタイプ の計測性能を確認した。しかしながら,原位置におい ては,複雑な自然現象が計測に影響を与えると考えら れるため,原位置での適用性確認が必須であり,今後, 原位置性能検証試験の実施を予定している。

図 3 計測上限性能検証試験状況

図4 計測上限性能検証試験におけるトレーサの 移動速度と計測結果表示軸