非軸対称荷重を受ける円形トンネルの弾塑性解析

鳥取大学大学院 学 古川 耕平・潮田 顕士・澤田 祐介 鳥取大学工学部 正 西村 強・木山 英郎

1. はじめに

トンネルや地下空洞の掘削が,空洞周辺地盤の応力状態に変化が生じることはよく知られており,地盤の掘削 により発生する壁面変位がその表れである.3次元解析が数多く報告されるようになったが,地山とトンネル支保 工の相互作用の解析などでは,2次元平面ひずみ解析を用いることが多い.しかし,平面ひずみ状態は,切羽から ある程度の距離にある断面では想定しうるが,切羽近傍の応力状態を十分表現できるとは言い難い.本研究では, 塑性ひずみも周方向に Fourier 級数展開可能であるとの仮定を設けて,円形トンネルの非静水圧状態下の解析を試 みたものである.

2. 変位と荷重の周方向の表現

軸対称体を節点で連結された四辺形断面をもつリング要素の集合体として表現する.要素内の任意点の変位を節 点の変位および形状関数 N を用いて次のように表す.

 $\mathbf{u} = \{u \quad v \quad w\}^T = \widetilde{\mathbf{N}}(r, \theta, z)\mathbf{u} = \mathbf{N}(r, z) \cdot \mathbf{u}_0 + \sum_{l=1}^{L} \mathbf{N}(r, z) \cos l\theta \cdot \mathbf{u}_l + \sum_{l=1}^{L} \mathbf{N}(r, z) \sin l\theta \cdot \mathbf{u}_l$ (1) ここに, u は節点の変位振幅である.一方, 節点荷重fについても,

以下のように表す.

 $\mathbf{f} = \{f_r \quad f_\theta \quad f_z\}^T = \mathbf{f}_0 + \sum_{l=1}^L \bar{\mathbf{f}}_l \cos l\theta + \sum_{l=1}^L \bar{\mathbf{f}}_l \sin l\theta \qquad (2)$ ひずみは次のように書かれる.

 $\{\varepsilon\} = \mathbf{B}\mathbf{u} = \begin{bmatrix} \mathbf{B}^0, \mathbf{B}^1, \dots, \mathbf{B}^L \end{bmatrix} \{\mathbf{u}_0 \quad \mathbf{u}_1 \cdots \mathbf{u}_L \}^T$ (3) $\Box \Box \Box \Box, \mathbf{u}_1 = \{ \overline{\mathbf{u}}_1 = \overline{\mathbf{u}}_1 \}^T , \mathbf{B}'_I = [\overline{\mathbf{B}}'_I, \overline{\overline{\mathbf{B}}}'_I] ,$

 $\mathbf{\overline{B}}_{i}^{l} = \mathbf{B}_{i}^{\theta} \cos l\theta - \hat{\mathbf{B}}_{i} \sin l\theta, \quad \mathbf{\overline{B}}_{i}^{l} = \mathbf{B}_{i}^{\theta} \sin l\theta + \hat{\mathbf{B}}_{i} \cos l\theta$ 剛性マトリックスは, D は弾性マトリックスとして次のように誘導 できる.

 $\mathbf{K}_{ij}^{lm} = \int_{V} \mathbf{B}_{i}^{lT} \mathbf{D} \mathbf{B}_{j}^{m} \mathrm{d}V = \int_{0}^{2\pi} \mathrm{d}\theta \int_{A} \mathbf{B}_{i}^{lT} \mathbf{D} \mathbf{B}_{j}^{m} r \mathrm{d}r \mathrm{d}z$ (4)

K^{lm}_{ii}=0(/≠m)であり,全体剛性マトリックスおよび各調和成分に関する荷重項は次式となる

$$\begin{bmatrix} \mathbf{K}^{00} & \mathbf{0} \\ & \mathbf{K}^{ll} \\ & \mathbf{0} & \mathbf{K}^{lL} \end{bmatrix} \begin{bmatrix} \mathbf{u}^{0} \\ \vdots \\ & \mathbf{u}^{l} \\ \vdots \\ & \mathbf{u}^{l} \end{bmatrix} + \begin{pmatrix} \mathbf{f}^{0} \\ \vdots \\ & \mathbf{f}^{l} \\ \vdots \\ & \mathbf{f}^{l} \end{bmatrix} = \mathbf{0}$$
(5)
$$\mathbf{f}_{i} = \begin{cases} \mathbf{f}_{i}^{0} = \int_{0}^{2\pi} F_{0} \mathbf{r} d\theta = 2\pi F_{i}^{0} \\ \vdots \\ & \mathbf{f}_{i}^{l} = \int_{0}^{2\pi} \overline{F}_{i}^{l} \cos^{2} l\theta d\theta = \pi \overline{F}_{i}^{l} \\ & \mathbf{f}_{i}^{l} = \int_{0}^{2\pi} \overline{F}_{i}^{l} \sin^{2} l\theta d\theta = \pi \overline{F}_{i}^{l} \end{cases}$$
(6)

塑性ひずみ $\{\varepsilon\}^p$ の周方向分布に次のような仮定を導入する¹⁾.

$$\{\varepsilon\}^p = \{\varepsilon_0\}^p + \sum_{l=1}^{L} \{\overline{\varepsilon_0}\}^{pl} \cos l\theta + \sum_{l=1}^{L} \{\overline{\overline{\varepsilon_0}}\}^{pl} \sin l\theta$$
(7)

$$\{\varepsilon_0\}^p = \frac{1}{2\pi} \int_0^{2\pi} \{\varepsilon\}^p (\theta) d\theta, \quad \{\overline{\varepsilon_0}\}^{pl} = \frac{1}{\pi} \int_0^{2\pi} \{\varepsilon\}^p (\theta) \cos l\theta d\theta, \quad \{\overline{\overline{\varepsilon_0}}\}^{pl} \frac{1}{\pi} \int_0^{2\pi} \{\varepsilon\}^p (\theta) \sin l\theta d\theta$$
(8)

振幅 $_{\{\varepsilon_0\}^p, \{\overline{\varepsilon_0}\}^{p^l}, \{\overline{\varepsilon_0}\}^{p^l}}$ は図 1を参照して数値積分により求める.

$$\{\varepsilon_0\}^p = \frac{1}{2\pi} \sum_{i=1}^m \sum_{i=1}^n C_i \left(\frac{\Delta \varepsilon_{0i}^p + \Delta \varepsilon_{0i+1}^p}{2} \right) \Delta \theta , \ \{\overline{\varepsilon_0}\}^{p_i} = \frac{1}{\pi} \sum_{i=1}^m \sum_{i=1}^n C_i \left(\frac{\Delta \varepsilon_{0i}^p + \Delta \varepsilon_{0i+1}^p}{2} \right) \Delta \theta \cos l\theta , \ \{\overline{\varepsilon_0}\}^{p_i} = \frac{1}{\pi} \sum_{i=1}^m \sum_{i=1}^n C_i \left(\frac{\Delta \varepsilon_{0i}^p + \Delta \varepsilon_{0i+1}^p}{2} \right) \Delta \theta \sin l\theta$$
(9)

キーワード:トンネル,切羽,弾塑性解析,軸対称体,フーリエ級数

連絡先(680-8552:鳥取市湖山町南4-101,0857-31-6093,0857-28-7899).

以上のように, θ方向の数値積分を実施するために, いくつかの断面において, 採用した降伏条件に対して, 応 力状態がそれを満足しているかどうかを調べる必要が生じる.

4. 解析モデルと解析結果

完全弾塑性体を仮定した岩盤中に掘削される円形トンネルを解析モデルとして考える(図 2). 初期応力状態を 円筒座標系内で次のように表現する.

$$\sigma_r^0 = \frac{\sigma_v + \sigma_h}{2} + \frac{\sigma_v - \sigma_h}{2} \cos 2\theta, \quad \sigma_\theta^0 = \frac{\sigma_v + \sigma_h}{2} - \frac{\sigma_v - \sigma_h}{2} \cos 2\theta, \quad \tau_{r\theta}^0 = \frac{\sigma_v - \sigma_h}{2} \sin 2\theta, \quad \sigma_z = \sigma_h = k_0 \sigma_v \tag{10}$$

ここに, σ_v は鉛直応力, σ_h , σ_z は水平方向の応力であり, いずれも主応力である.また, σ_z は, トンネル軸 z に平行である.掘削過程は, 陰影部をトンネル掘削部として r = a (a=5m)及び切羽面(z=10m)より荷重振幅 p_0 (たとえば, $(\sigma_v + \sigma_h)/2$)を全10段階(1段階10%)に分けて作用させて表現する.表 1は,諸定数をまとめている.

この解析では, 0=0°~180°間の10°ごとの断面で応力状態が降伏条件を満足するか否か検査するとともに,降伏に 至った場合は,各調和成分に対する塑性ひずみの振幅を式(9)によって決定している.図3にトンネル壁面変位, 図4にトンネル壁面付近の塑性域分布の分布を示す.なお, $\theta=0^\circ$ はクラウン, $\theta=90^\circ$ は側壁中央を示す. 図3より切羽近傍では切羽の存在によりある程度変位が拘束されているが,切羽からの距離が大きくなるにつれて,2次元平面ひずみ解2)に収束していることが確認できる.

<u>参考文献</u>: 1)Winnick, L. A., & Zienkiewicz, O. C., 1979, Plastic (or visco-plastic) Behavior of Axi-symmetric Bodies Subjected to Non-symmetric Loading – Semi Analytical Finite Element Solution -, Int., Journal for Numerical Methods in Engineering, Vol.14, pp.1399-1412. 2)古川耕平,福田 毅,三上 浩,木山 英郎,西村 強, 2003, ひずみ軟 化特性を考慮した円形トンネルの変形解析,土木学会中国支部第 55 回研究発表会講演集, pp.259-260.

表-1 解析定数

Young's modulus: 100 MPa Poisson ration: 0.15 Angle of internal friction: 15 (degs.) Cohesion: 0.4 MPa Initial stress: $\sigma_v = 1.0$ MPa $\sigma_h, \sigma_z = 0.6$ MPa Tunnel radius : a=5(m)

