中越地震による表層斜面崩壊メカニズムに関する解析的検討

明治コンサルタント(株)	(正)酒井直樹	(正)島内哲哉
長岡技術科学大学	(正)豊田浩史	(正)中村公一

1. はじめに

2004 年に発生した中越地震は、山間部における直下型地 震として、無数の土砂災害を引き起こした.このような斜面 の危険度評価は、従来、水平震度法を適用した限界平衡解析 によって行われてきたが、この手法では崩壊メカニズムの評 価が難しいケースも少なくない.一方、近年では、数値解析 を用いて、斜面の増幅特性、塑性変形を考慮する方法も報告 されている¹⁾.本研究では、数値解析手法を用いて、中越地 震により発生した斜面表層崩壊の事例解析を行い、そのメカ ニズムと評価手法についての検討を行った.

2. 地震による表層崩壊の概要

震源に近い魚沼市(旧堀之内町)において,高さ約40m, 勾配約50°の斜面表層部が,今回の地震によって,幅100m 強にわたり崩落した(写真1).現場の地質は,砂泥互層を有 する魚沼層に該当し,受け盤的構造である. 崩壊断面は, 簡易測量によって図1のように想定した.法肩部より中腹に かけて表層数m程度が崩落する崩壊形態を示す.この中腹部 で,土質状態を確認するため不攪乱試料を採取した(写真2).

3. 解析概要

動的弾塑性解析には、2次元 Finite Differential Method (FDM)を元にしたコード²⁾を用いており、大変形解析も行えるのが特徴の一つである.降伏規準には弾塑性モールクーロン則を用いている.

地盤モデル 解析モデルを図2に示す.両端は,X軸固定, 下端は,XY軸固定であり,波の反射の影響が少ないように 大きめな領域をとっている.入力地震波は下側境界から水平 方向のみの地震波形を用いた.動的解析時のレーリー減衰パ ラメータであるα,βは,各0.05,1.5を用いた.

地盤物性値 地盤物性値は,基盤層である魚沼層(第四紀 砂泥互層)をDMからDH相当として,文献³⁾を参考に決定し た(L1層).風化層(L2層)の物性値は,斜面中腹部にお いて,塩ビ管を押し込むことにより不攪乱試料を採取し,定 圧一面せん断試験を実施しc, ϕ を決定した.土質試験結果 は,砂分が多く,含水比は25%,間隙比 e=0.95 であり,かな り緩い地盤であることを示している.それらの結果を基に, 決定した地盤定数を,表1に示す.

表1 計算に用いた	こ地盤定数
-----------	-------

	単位体積重量 (kN/m ³)	内部摩擦角 (°)	粘着力 (kN/m ²)	引張応力 (kN/m ²)	ポアソン比	ヤング率 (kN/m ²)
L1	22	42	20	10	0.33	1.00E+08
L2	17	35	10	0	0.33	1.00E+07

入力地震動 本研究では防災科学技術研究所で公開され ている基盤強震観測網(KiKNET)⁴⁾での波形を使用した.これ は、地表での地震観測と同時に地下 100m 程度の孔底におい て基盤(Vs=850m/s 程度)での地震観測を行っている.ここで は、解析現場にほど近い観測点である十日町市(旧川西町)で の地中での基盤上の地震波形を用い(図3),そのまま入力波 形としている.斜面方向が東西を向いているため、入力波形 は、NS 成分とした.最大加速度は 238gal であり、表層では、 454gal とほぼ 2 倍の加速度が観測されている.入力時には、 この 0 から 40 秒までの波形を入力、その後 60 秒間加速度ゼ ロの状態で計算を行い変位が収まるのを確認した. **工学基盤** 一般的に地震波の入力基盤は、Vs 速度で決める ことが多い. その速度の違いによる基盤深度の違いにより, 応答波形は異なり,解析結果に影響を及ぼすため決定には慎 重さを要する.しかし,該当斜面のような風化岩の露出する 山間部での基盤の決定法は、今のところないようである.そ こで、前述の KiKNET で公開されている十日町市(旧川西町) での波形データを用いた.このデータは、地下 100m のボー リング孔内に設置された地震計から得られたもので、条件が 該当斜面に近似しているため、解析モデルでも基盤を斜面下 部から 100m のところに設定した.

4.解析結果

斜面応答特性と,斜面での風化部層厚の影響を検討した. 斜面応答特性 表2に,caselでのM1~M4の最大応答 加速度を示す.水平地盤の観測点であるM1,M4は,入力 加速度のほぼ2倍と,川西町での観測された値と一致してい る.一方法肩部(M3)では,X方向の加速度が大きくパルス状 に2000galを超える値もあり,Y方向(上下方向)に関して も他点よりも特に大きい値となっている.他の場所に比べる と,のり肩部は地震波に対して特異な点ということがいえる.

表2 各計測点における応答加速度 (case1)

	M1	M2	M3	M4
X方向	420 gal	600 gal	2100 gal	510 gal
Y方向	90 gal	220 gal	1450 gal	160 gal

風化層厚の影響 地盤モデルとして、ケース1はL1層の み、ケース2とケース3は、それぞれ表層に風化部を2m、 10mにL2層を設けた2層構造モデルとした。それぞれ結果 を、(a)変位図、(b)ひずみ増分図、(c)塑性履歴図として図 4に示す。凡例は、ケース2を基準に示している。ケース1 では、大きな加速度により塑性履歴(図4-1c)は残っているが、 結果として塑性化している領域はなく、変位(図4-1a)もひず み(図4-1b)も小さかった。一方、弱層を設定すると、その部 分で塑性化しているのがわかる(図4-2c, 3c)。ケース3のよ うに弱層の厚い場合は、円弧すべり形状を呈しており、変位、 ひずみも非常に大きい(図4-3a, 3b)。ケース2では表面は塑性 化しているが(図4-2c)、ひずみは上部に集中している(図 4-2b)。それゆえ変位図(図4-2a)も法肩部から中腹にかけ て大きく変位しており、今回の地震で数多くみられたのり肩 からの崩壊形態と定性的に一致していることがわかった。

5. まとめ

風化層の厚さとその地盤定数を適切に評価できれば,動的 弾塑性解析を用いて,地震時の斜面崩壊に対する危険性を評 価できることを示した.今後,さらに多くの事例解析を行う ことで,より適切なモデルや入力定数の決定法について検討 を加えていきたいと考えている.

〈参考文献〉

 1)鵜飼恵三,井田寿朗,若井明彦,地震時の斜面の安定性に 及ぼす3次元効果,土木学会論文集,No.554/III-37,119-128,
1996. 2) FLAC, ITASCA softwares inc. (http://www.itascacg.com).
3) 日本応用地質学会,岩盤分類,応用地質特別号,91-102,
1984. 4) 防災科学技術研究所HP,基盤強震観測網 KiKNET,.

Tel:048-291-0520 Fax: 048-291-0529 Email:sakai-n@meicon.co.jp

キーワード: 表層崩壊, 動的解析, 地盤定数

図4 解析結果