水平管内スラグ流の流動と加速損失について

日本大学大学院	学生会員	村上	康博
日本大学大学院	学生会員	山田	泰正
日大生産工学部	フェロー会員	遠藤	茂勝

1.はじめに

相は姿形や状態を意味する言葉であり、物質はこの 相を用いて、気相・液相・固相に大別することができ、 これら各状態が混合した流体を混相流と呼ぶ。また、 気相と液相の二相が混在した状態の流れは、気液二相 流と分類することができ、他にも固気液三相流などが 存在する。このうち気液二相流は、浚渫工事における 軟泥の輸送や、発電所のエネルギー関連装置、化学工 業装置など広汎に用いられている。そのため、気液二 相流に関する研究は急速に進展している。しかし、冷 却装置を中心とした小口径で短距離の研究が多く、軟 泥輸送で使用されているような大口径で長距離輸送を 対象としたものではない。また、管内の現象がきわめ て複雑で、流動の可視化が困難なこともあり、十分な 現象の解明に至っていない。

そこで本研究では、スラグ流の流動を解明する目的 で水と空気を用いた可視化による研究を行った。

2.実験概要

本実験で使用した装置を Fig.1 に示す。管路延長 L=600m、管内径d=38mmの透明なビニール管を用 いてかしか実験を行った。気相である圧縮空気はエア コンプレッサーから供給され、エアドライヤで水分を 除去した後、空気流量計で検定し管内に流入する。一 方、液相である清水はタンクからポンプによって供給 され、流量計を通して検定されたのち管内に流入する。 気相と液相を同時かつ連続的に供給することから混合 流が発生する。また、実験条件は Table.1 に示す気液 流量比の 72 条件とした。測定は、スラグ流速度を V1~V5、周期はT1~T5の各5地点、圧力はP0~P5の 6地点で測定を行った。

3.実験結果および考察

スラグ流の基本的な特性として流動距離によるス

キーワード: スラグ流,気液二相流,加速損失水頭 連 〒272-8575 千葉県習志野市泉町 1-2-1 TEL047-474-2445

絡先	
----	--

ラグ流速度と管内圧力について検討を行ったものが Fig.2 である.これは横軸に測定地点 L,縦軸にスラ グ流速度 Vs,管内圧力 Pをとり、流動距離による変 化について示した。図より気液流量比の異なる条件を 載せているが、すべての条件においてスラグ流速度が 増加し、スラグ発生地点において圧力が高く,気相が 圧縮されたまま流動している。流動距離が進むと徐々 に膨張し速度が加速するので流動距離が進むと速度が 増加するものと考えられる。また圧力は、気相が膨張 し大気圧に近づくため低下することがわかる。これよ り、スラグ流速度の増加は気相の膨張が起因となって いるものと考えられる。

各地点の速度水頭と圧力水頭を求めて水頭の変化 について推算すると圧力水頭は速度水頭よりかなり大 きく、圧力水頭の減少に伴う速度水頭があまり増加し ないことから、加速損失について検討する。流動距離 と水頭をパーセント表示したものを Fig.3,4 にそれぞ れ示した。縦軸に水頭,横軸に流動距離をとり、液相, 気相別に示している。液相流量を一定にし、気相流量 を増加させると、加速損失水頭は減少傾向を示し、管 路出口に近づくに従い増加して約 50%前後にまでな っている。また、気相流量を一定で、液相流量を増加 させた場合には、液相流量の増加に伴い加速損失水頭 は増加傾向を示した。

液膜部の液体は液相スラグに吸収されるときに加速 され、この加速のためにスラグ先端部で圧力損失が生 じることから、スラグ先端からスラグ内に流入する質 量について検討を行った。混相流比と流入質量を示し たものを Fig.5,6 に示した。縦軸に流入する質量,横 軸に気液流量比をとり、気相,液相それぞれ変化させ 距離別で示した。100m地点では、流入質量が一様に 変化しており、気液流量比が流入質量に大きく関係し ていることがわかる。これは初期流速にあまり変化が ないためだと考えられる。500m地点では、気液流量 比に対して一様な変化ではなく、ある一定な点で流入 質量が最大値を示している。これにより、Fig.5,6 のよ うな加速損失水頭が一定的な変化ではないことがわか る。

4.まとめ

スラグ流の速度が速ければ、管底の液相の上を流動 するような形となるが、流動が遅い場合には、管底の 液相を取り込みながら流動するため加速損失が大きく なり、その変化は距離が長ければ、その分だけ顕著に 現れる。

参考文献

- 小川元,遠藤茂勝:スラグ流の発生メカニズムと 流動解析,土木学会流体力の評価とその応用に関 する研究論文集, Vol.2, pp77~82, 2003.
- 2) 日本機会学会編:気液二相流ハンドブック,コロ ナ社,pp260-268,1989.