# 目的関数の差異による洪水流量推定誤差に及ぼす影響

株式会社 北開水工コンサルタント (財) 北海道河川防災研究センター 株式会社 建設技術研究所 北海道支社 北海道工業大学 工学部 土木工学科

1. はじめに 流出解析を行う際、計算値が観測値に 適合するようにモデル定数を推定する必要がある。 このとき、なんらかの目的関数を用いて定数の最適化 を行う必要がある。本報告では、目的関数として *KAI2*(カイ2乗基準)と *MSE*(誤差二乗和平均)を取り上 げ、目的関数による差異がピーク相対誤差とハイドロ グラフ相対誤差の評価指標にどのように影響を及ぼす かを比較検証する。モデル定数の最適化にあたっては、 一階のニュートン法を用いる。このとき、一次導関数 (感度係数)は感度方程式から解析的に求める<sup>1)</sup>。

2. 目的関数 使用する目的関数は、観測流量と計算 流量の誤差二乗和平均を最小にする基準である *MSE*(mean squares error)式(1)と統計学における適合度 検定で用いられているカイ2乗基準式(2)とする。

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (q_{oi} - q_{ci})^2$$
(1)

$$KAI2 = \frac{1}{N} \sum_{i=1}^{N} \left\{ (q_{oi} - q_{ci}) / \sqrt{q_{oi}} \right\}^2$$
(2)

ここに、*q<sub>ai</sub>*:観測流出高[mm/h], *q<sub>a</sub>*:計算流出高[mm/h]、 *N*:データ数

3. 評価方法 比較に用いる指標はピーク流量を評価 する式(3)の*J<sub>pe</sub>、ハイドログラフ*全体を評価する式(4) の*J<sub>re</sub>である。J<sub>pe</sub>*および*J<sub>re</sub>*は小さい方が精度が高くなる 指標である。*J<sub>pe</sub>とJ<sub>re</sub>*の評価指標は次式で定義される。

$$J_{pe} = (q_{op} - q_{cp}) / q_{op}$$
(3)

$$J_{re} = \frac{1}{N} \sum_{i=1}^{N} |q_{oi} - q_{ci}| / q_{oi}$$
(4)

ここに、 $q_{op}$ : 観測ピーク流出高[mm/h]、 $q_{cp}$ :計算ピーク流出高[mm/h]

4. 解析対象流域 本報告では、流出特性が異なると 考えられる 4 河川を解析例として取り上げることにす る。解析対象洪水の特性及び複合流域モデルで計算に 必要となる河道特性を要約して、表-1 に示す。

≢

| -1 | 解析例におけ | る流域特性及び洪水 | 持性 |
|----|--------|-----------|----|
|    |        |           |    |

|             | 留萌川     | 雨竜川     | 渚滑川     | 湧別川     |  |  |  |  |
|-------------|---------|---------|---------|---------|--|--|--|--|
| 観測所名        | 幌糠      | 多度志     | 上渚滑     | 開盛      |  |  |  |  |
| 対象洪水        | S630826 | S630825 | H100916 | H100916 |  |  |  |  |
| 流域数         | 8       | 7       | 9       | 14      |  |  |  |  |
| 河道数         | 4       | 4       | 5       | 7       |  |  |  |  |
| 合流点数        | 6       | 2       | 5       | 8       |  |  |  |  |
| 全地点数        | 27      | 24      | 31      | 48      |  |  |  |  |
| 流域面積(km²)   | 168.5   | 998.8   | 1050.6  | 1334.8  |  |  |  |  |
| ピーク流量(m³/s) | 613.78  | 1432.75 | 1501.01 | 1291.38 |  |  |  |  |
| 比流量         | 3.64    | 1.43    | 1.43    | 0.97    |  |  |  |  |
| 平均雨量強度      | 6.26    | 3.69    | 2.79    | 2.55    |  |  |  |  |
| 流出率         | 0.733   | 0.574   | 0.834   | 0.752   |  |  |  |  |

| 〇正 員 | 伊賀 久晃 (Hisaaki Iga)        |
|------|----------------------------|
| フェロー | 星 清 (Kiyoshi Hoshi)        |
| 正 員  | 貞本 均 (Hitoshi Sadamoto)    |
| フェロー | 橋本 識秀 (Norihide Hashimoto) |

5. 洪水流出モデルの概要

(1) 有効雨量を用いた貯留関数法

$$s = k_1 q^{p_1} + k_2 \frac{d}{dt} (q^{p_2}), \quad \frac{ds}{dt} = r_e - q \bigg\}$$
(5)

ここに、*s*:貯留高[mm]、*r<sub>e</sub>*:有効雨量[mm/h]、*q*:直接流 出高[mm/h]、*k*<sub>1</sub>,*k*<sub>2</sub>:貯留係数、*p*<sub>1</sub>,*p*<sub>2</sub>:貯留指数

$$\begin{cases} k_1 = \alpha f_c, & k_2 = \beta k_1^2, & f_c = (n/\sqrt{i})^{0.6} \\ p_1 = 0.6, & p_2 = 0.4648 \\ \alpha = 2.8235 A^{0.24}, & \beta = 0.2835 (\overline{r_e})^{-0.2648} \end{cases}$$
(6)

ここに、A:流域面積[km<sup>2</sup>]、*r<sub>e</sub>*:平均有効雨量[mm/h]、 n:等価粗度、i:斜面勾配

上式は複雑に見えるが、ファクター f<sub>c</sub>の値が決まれ ば、すべての定数が一義的に求まり、流出計算が可能 となる。最適化計算手法については、参考文献2)を参 照されたい。なお、本手法で複合流域系の計算を行う 場合、ファクター f<sub>c</sub>を全分割流域で同一値をとるもの とする。本手法を用いて、4洪水例で再現計算を行っ た結果を**表-2**にまとめて示す。

表-2 目的関数の違いによる差異比較

|      | 目的関数 | Jre   |       |       |       | Jpe    |       |       |        |
|------|------|-------|-------|-------|-------|--------|-------|-------|--------|
|      |      | 留萌川   | 雨竜川   | 渚滑川   | 湧別川   | 留萌川    | 雨竜川   | 渚滑川   | 湧別川    |
| 単一流域 | KAI2 | 0.304 | 0.135 | 0.136 | 0.099 | -0.141 | 0.015 | 0.050 | 0.068  |
|      | MSE  | 0.305 | 0.128 | 0.124 | 0.099 | -0.135 | 0.118 | 0.081 | 0.064  |
| 複合流域 | KAI2 | 0.268 | 0.231 | 0.130 | 0.152 | -0.101 | 0.076 | 0.092 | 0.007  |
|      | MSE  | 0.270 | 0.262 | 0.128 | 0.153 | -0.109 | 0.105 | 0.071 | -0.003 |

ハイドログラフ全体での適合度を各河川及び単一・ 複合流域で見ると目的関数による差異はみられない。 ピーク流量に関する指標*J<sub>pe</sub>では、雨竜川において目的* 関数による差異が大きい。図-1と図-2に示されるよう に、ピーク近傍において顕著な差異がみられる。



キーワード:貯留関数法、最適化手法、ニュートン法、基本高水

**連 絡 先**:〒062-0052 札幌市豊平区月寒東2条20丁目5-10

TEL: 011-857-7605 FAX: 011-857-7608

## (2) 損失項を含む貯留関数法

次式に損失項を含む貯留関数法を示す。

$$\frac{ds}{dt} = r - q - b + q_0, \quad s = k_{11}q^{p_1} + k_{12}\frac{d}{dt}(q^{p_2}) \\
b = (c_{13} - 1)q, \qquad q_0 = q_B \exp(-\lambda t)$$
(7)

ここに、s:貯留高[mm]、r:観測雨量[mm/h]、q:観測 流出高[mm/h]、b:損失高[mm/h]、 $q_0$ :地下水流出高 [mm/h]、 $q_B$ :初期流出高[mm/h]、 $k_{11}$ , $k_{12}$ :貯留係数、 $p_1$ , $p_2$ : 貯留指数、 $\lambda$ :減衰係数

$$\begin{array}{l} k_{11} = c_{11}A^{0.24}, \quad k_{12} = c_{12}k_{11}^2(\overline{r})^{-0.2648}, \quad \lambda = 0.019 \\ p_1 = 0.6, \qquad p_2 = 0.4648 \end{array}$$
(8)

ここに、A:流域面積[km<sup>2</sup>]、r :平均雨量強度[mm/h]、 c<sub>11</sub>,c<sub>12</sub>,c<sub>13</sub>:未知定数

減衰係数 λ はハイドログラフ低減部の標準減衰曲 線から得られる流域固有の値である。本報告では、λ= 0.019に固定した。最適化計算手法については、参考文 献1)を参照されたい。なお、本手法では複合流域系の 計算を行う場合、未知定数 *c*<sub>11</sub>,*c*<sub>12</sub>,*c*<sub>13</sub>は全分割流域で同 一値をとるものとする。本提案手法を用いて、4洪水 例で再現計算を行った結果を表-3に示す。目的関数に よる差異が現れた箇所を太文字で示す。

表-3 目的関数の違いによる差異比較

|      | 目的関数 | Jre   |       |       |       | Jpe   |       |       |       |
|------|------|-------|-------|-------|-------|-------|-------|-------|-------|
|      |      | 留萌川   | 雨竜川   | 渚滑川   | 湧別川   | 留萌川   | 雨竜川   | 渚滑川   | 湧別川   |
| 単一流域 | KAI2 | 0.427 | 0.432 | 0.179 | 0.160 | 0.047 | 0.186 | 0.158 | 0.195 |
|      | MSE  | 0.464 | 0.484 | 0.240 | 0.191 | 0.013 | 0.148 | 0.101 | 0.131 |
| 複合流域 | KAI2 | 0.417 | 0.244 | 0.121 | 0.102 | 0.058 | 0.062 | 0.127 | 0.123 |
|      | MSE  | 0.456 | 0.266 | 0.156 | 0.118 | 0.027 | 0.048 | 0.080 | 0.087 |

ハイドログラフ全体での適合度を示す*J<sub>r</sub>*では差異が見られず、ピーク流量の精度に関する指標*J<sub>pe</sub>*では、単一流域の4河川で*MSE*を用いた方が、適合度が高くなる。

#### (3) 地下水流出を含む貯留関数法

1段目タンクは次式の非線形貯留方程式で表現する。

ここに、 $S_1$ :1段目タンク貯留高[mm]、r:観測雨量 [mm/h]、 $q_1$ :表面・中間流出高[mm/h]、 $f_1$ :1段目タンクか ら2段目タンクへの浸透供給量[mm/h]、 $k_{11},k_{12}$ :貯留係 数、 $k_{13}$ :浸透係数、 $P_1,P_2$ :貯留指数

1段目の損失量は浸透供給量 $f_1$ として、すべて2段 目タンクへの入力とし、 $P_1$ と $P_2$ については、式(8)の 値とした。また、定数 $k_{11}$ と $k_{12}$ も式(8)の関係式で与えら れる。

次に、2段目タンクの地下水流出成分を次式の線形 貯留方程式で表現する。

$$s_{2} = k_{21}q_{2} + k_{22}\frac{d}{dt}(q_{2}), \quad \frac{ds_{2}}{dt} = f_{1} - q_{2}$$
 (10)

ここに、 $s_2$ :2段目タンク貯留高[mm]、 $q_2$ :地下水流出高[mm/h]、 $k_{21}, k_{22}$ : 貯留係数

1段目(表面・中間流出成分)の流出高 91と2段目(地下

水流出成分)の流出高 $q_2$ を合計して全流出高qとする。

$$q = q_1 + q_2 \tag{11}$$

最適化計算手法については参考文献3)を参照されたい。 なお、本手法で複合流域の計算を行う場合も未知定数 *c*<sub>11</sub>,*c*<sub>12</sub>,*c*<sub>13</sub>は全分割流域で同一値をとるものとする。本 手法を用い、4洪水例で再現計算を行った結果を表-4 にまとめて示す。目的関数による差異が現れた箇所を 太文字で示す。

表-4 目的関数の違いによる差異比較

|      | 目的関数 | Jre   |       |       | Jpe   |        |        |       |       |
|------|------|-------|-------|-------|-------|--------|--------|-------|-------|
|      |      | 留萌川   | 雨竜川   | 渚滑川   | 湧別川   | 留萌川    | 雨竜川    | 渚滑川   | 湧別川   |
| 単一流域 | KAI2 | 0.660 | 0.468 | 0.168 | 0.142 | -0.240 | -0.142 | 0.072 | 0.124 |
|      | MSE  | 1.877 | 0.556 | 0.188 | 0.161 | -0.039 | 0.129  | 0.060 | 0.089 |
| 複合流域 | KAI2 | 0.661 | 0.360 | 0.105 | 0.104 | -0.212 | 0.110  | 0.045 | 0.049 |
|      | MSE  | 1.889 | 0.425 | 0.118 | 0.112 | -0.022 | 0.049  | 0.041 | 0.048 |

指標J<sub>re</sub>については、目的関数による顕著な差異は見られないが、留萌川・雨竜川で単一・複合流域ともに目的関数KAI2を用いると適合度が高い。また、ピーク流量の精度指標J<sub>pe</sub>に関しては、留萌川・雨竜川において目的関数MSEを用いた方が、適合度が高くなる。

### 6. まとめ

本報告では、幌糠(留萌川)、多度志(雨竜川)、上渚 滑(渚滑川)、開盛(湧別川)での洪水再現計算を行い、 目的関数の差異による貯留関数法の精度比較を行った。 以下に結論を要約して述べる。

(1)単一流域・複合流域モデルともに損失項を含む貯留 関数法と地下水流出成分を含む貯留関数法で、目的関 数にMSEを用いた方がピーク値の再現精度が高くなっ ている。

(2) 有効雨量を用いた貯留関数法について、今回の4洪 水例では単一流域・複合流域モデルともに、目的関数 *MSE・KAI2*の違いによる大きな差異は見られない。

(3) 単一流域モデルと複合流域モデルの精度を比較す ると、損失項を含む貯留関数法、地下水流出成分を含 む貯留関数法ともに、複合流域モデルを用いた方が、 ピーク流量の精度が高くなることが確認された。

(4) どの流出モデルにおいても単一流域・複合流域モデルともに、目的関数KAI2で $J_{re}$ が小さく、MSEでは $J_{pe}$ が小さくなる傾向が確認された。

(5) 基本高水の推定では、ピーク流量の適合度がより 重要視される場合が多い。よって、目的関数に MSE を用いた方がピーク流量の再現性が高いと考えられる。

#### 参考文献

- 1)(財)北海道河川防災研究センター:一般化貯留関 数法による流域流出解析・河道洪水追跡実用計算 法,152p.,2001.5.
- 2)北海道開発局土木試験所河川研究室:実用的な洪水 流出計算法,185p.,1987.3.
- 3) 星清・松木賢治: 2段タンク型貯留関数法を用いた 流域流出・河道追跡モデルの計算手法,(財)北海道 河川防災研究センター,研究所紀要XV, pp.407-459, 2004.10.