二次元ボクセル有限要素法による 不整合要素を用いたコンクリートの引張破壊解析

琉球大学	学生会員	山城	建樹	日本原子力研究所	正会員	松原	仁
琉球大学	正会員	伊良波	繁雄	琉球大学	正会員	富山	潤
				琉球大学	学生会員	神田	康行

1. 目的

本研究では,二次元ボクセル有限要素法によるコン クリートの引張破壊解析に,垂直方向バネとせん断方 向バネを要素境界に設ける事により,不整合要素の取 り扱いを可能とした一解析手法を示す.また,本手法 の妥当性を検討する為,Cornelissen等の行なった無筋 コンクリート棒の直接引張試験の数値解析を行い,本 手法の妥当性を検討した.

2. ボクセル有限要素法

本手法で用いた二次元ボクセル有限要素法⁽¹⁾は,解 析領域全体を包含する直方形を考え,これを四辺形要 素(ピクセル要素)で分割する.また,要素形状が全 て同一であるため,要素剛性マトリックスの作成が材 料数分で良く,従来の有限要素法に比べ要素剛性マト リックス作成に要する時間を大幅に短縮でき,大規模 解析等に有利な解析手法である.

3. 不整合メッシュ

本論文では,不整合要素境界上に存在する節点変位 を要素の形状関数を用いて評価している⁽²⁾.具体的に は,図-1に示すように要素境界上の*i*,*j*辺上に存在す る中間節点*m*'の変位(*u*'_m)は,*i*,*j*点の節点変位(*u*_{*i*}), (*u*_{*i*})を用いて式(1)のように表される.

図-1 不整合メッシュ境界上の節点

$$\boldsymbol{u}_{m}^{\prime} = \begin{bmatrix} N_{i}^{m^{\prime}} & N_{j}^{m^{\prime}} \end{bmatrix} \begin{bmatrix} \boldsymbol{u}_{i} \\ \boldsymbol{u}_{j} \end{bmatrix}$$
(1)

ここで, *N*^m_i, *N*^m_j は*i*, *j* 点の形状関数に*m*'点の座標 値を代入した既知量である.次に, *m* 点の変位を(*u*_m) とすると, 不整合メッシュ境界面での変位の連続性を 考慮すると式(2)が成立する.

$$\alpha \left[-N_{i}^{m'} - N_{j}^{m'} - 1 \right] \left\{ \begin{matrix} u_{i} \\ u_{j} \\ u_{m} \end{matrix} \right\} = \left\{ 0 \right\}$$
(2)

ここで, α はペナルティー数であり物理的には m 節点 が接合する ij 辺間のバネ定数を意味している. 式(2)の両辺に [- N_i^{m'} - N_j^{m'} 1]を乗じ,対称行列に変形 すると式(3)となる.

$$\alpha \begin{bmatrix} N_i^{m'^2} & N_i^{m'} N_j^{m'} & -N_i^{m'} \\ N_i^{m'} N_j^{m'} & N_j^{m'^2} & -N_j^{m'} \\ -N_i^{m'} & -N_j^{m'} & 1 \end{bmatrix} \begin{bmatrix} u_i \\ u_j \\ u_m \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3)

よって, 解くべき剛性方程式が次式で表される.

$$(K + \alpha A)u = f \tag{4}$$

ここで,Kは全体座標系での剛性マトリックスであり, 以上のように式(3)を用いれば不整合メッシュに対し ての解析が可能となる.

4. 数值解析方法

本研究では,解析方法として不安定現象が生じた場 合でも解析が可能である引張軟化を考慮した動的釣合 式を用いた増分法を採用した⁽³⁾.また,破壊力学を考 慮したコンクリートのひび割れモデルとして,図-2に 示すひび割れ方向を任意に求めることのできるひび割 れ帯モデルを用いた.さらに,コンクリートの引張破 壊解析によく用いられる引張軟化曲線の二直線モデル として,図-3に示す折れ曲り位置での応力が引張強度 の1/4 となる1/4 モデルを用いている.

キーワード 不整合要素 二次元ボクセル コンクリート 引張破壊 連絡先 〒903-0129 沖縄県西原町字千原1番地 琉球大学工学部環境建設工学科 TEL098-895-8649

σ_i:最大主応力, n:ひび割れ方向, θ:主応力方向
図-2 ひび割れ帯モデル

5. 数值解析例

ここで,本解析手法に対しての不整合要素の適用性 を確認する為,図-4(a)に示す Cornelissen 等の行なっ た両側切欠きを有する無筋コンクリート棒の直接引張 試験の数値解析を行った.図-4(b)に解析に用いた整 合要素の要素分割図を,表-1に材料特性と解析条件を 示す.また,図-5に不整合要素の要素分割図と,接合 した各要素のメッシュサイズを表-2に示す.なお,不 整合要素を用いた場合の材料特性と解析条件は,表-1 と同様である.

図-4 引張試験供試体と要素分割図

表-1 材料特性と解析条件

弾性係数(N/mm ²)	39270.0	重力加速度(mm/sec ²)	9806.65
ポアソン比	0.2	単位体積重量(t/m ³)	2.3
引張強度(N/mm ²)	3.2	時間増分(sec)	7.73×10^{-5}
破壊エネルギー(N/mm)	0.10313	強制変位(mm)	4×10^{-4}

Type7 Type6 Type5 Type3 Type2 Type1

表-2 接合要素サイズ								
		分割範囲	Pixel Size					
4	Type1	0 y 40.0	10.0 × 10.0					
	Type2	40.0 y 77.5	7.5 × 7.5					
	Type3	77.5 y 122.5	5.0 × 5.0					
	Type4	122.5 y 127.5	2.5 × 2.5					
	Type5	127.5 y 172.5	5.0 × 5.0					
	Type6	172.5 y 210.0	7.5 × 7.5					
	Type7	210.0 y 250.0	10.0 × 10.0					

図-5 不整合要素分割図

ここで,解析結果より得られた切欠き線上の平均主応力とエクステンソメータの伸びとの関係を図-6 に示す.図-6 の解析結果より,整合要素と不整合要素共に,Cornelissen 等の実験範囲と比較的良好な一致を示しており,両モデル共に,ほぼ同値で引張軟化が発生,進行している.また,解析に要した時間は,整合要素で245.610秒,不整合要素で33.328秒となっており,不整合要素を用いた場合は約1/7.4 倍の解析時間の短縮となっている.

図-0 中均土心力 - エウスアンクスータの件 6.まとめ

本研究では,不整合要素を用いた二次元ボクセル有 限要素法によるコンクリートの引張破壊解析行い, Cornelissen 等の実験結果と比較検討した.その結果,本 手法は,軟化挙動および解析時間共に,良好な結果を 示しており,本手法への不整合要素の適用性を示した. 参考文献

- 1) 鈴木克幸, ほか:多重ボクセルを用いたソリッド 構造の解析法,日本計算工学会論文集,2(2), pp.395-398,1997
- 2) 松原仁, ほか:要素寸法の異なる不整合メッシュ に関する基礎的研究,応用数理学会2004年度年会 講演予稿集, pp.170-171,2004.9.
- 3) 富山潤:コンクリートの引張破壊挙動に関する解 析的研究,琉球大学博士論文,2000.3