Spline 選点法を用いた扇形 Mindlin 板の曲げ解析

大同工業大学大学院 学生員 後藤 大輔 大同工業大学 正員 水澤 富作

1.**はじめに** 扇形厚板は、曲線スラブや曲線デッキなどの構造要素として用いられており、その曲げ特性を知ることは、設計上重要な課題であるが、薄板問題と比較して、扇形厚板の曲げ解析はさほど多く研究されていない。半径方向の2辺が単純支持された扇形厚板の曲げ解析では、Levy法とベッセル関数を適用した解析解が Kobayashi ら¹⁾により求められている。また、扇形 Mindlin 板の曲げに関する支配方程式は、独立したたわみと2つの回転角を仮定した3元連立偏微分方程式で与えられ、Differential Quadrature 法(DQ法)²⁾、選点法³⁾や差分法などを用いて直接数値的に解くことができる。

本研究では、spline 選点法を定式化し、半径方向の2辺が単純支持され、2つの円弧辺が任意の境界条件 を持つ扇形 Mindlin 板の曲げ解析への適用について検討を行い、本手法の収束性や精度について検討を行う。 2.式の定式化

2.1 spline 選点法 $w, \varphi_r, \varphi_\theta$ をそれぞれ独立した変位関数とする 3 元連立微分方程式で表される線形境界値問題は、微分演算子L, Bを用いて、次式で表される。

ここで、q(r), g(r)は与えられた関数である。したがって、領域残差 R_L 図 - 1 扇形 Mindin 板と極座標系 と境界残差 R_B は、それぞれ次式で表される。 $R_L = L(w, \varphi_r, \varphi_\theta) - q(r), R_B = B(w, \varphi_r, \varphi_\theta) - g(r)$ (2)

これらの残差を領域内の選点(N_r 個)と各境界点に導入される境界条件の総数(M 個)について求めると、次式で示される。 $R_L(r_i) = L(w_i, \varphi_{r_i}, \varphi_{\theta_i}) - q(r_i,); i = 1, 2, ..., 3N_r$

$$R_B(r_{3N_r+j}) = B(w_{3N_r+j}, \varphi_{r_{3N_r+j}}, \varphi_{\theta_{3N_r+j}}) - g(r_{3N_r+j}); j = 1, 2, ..., M$$
(3)

(1)

独立した 3 つの変位関数 $w, \varphi_r, \varphi_{\theta}$ は、B-spline 関数を用いて、次式で仮定する。

$$\varphi_r = \sum_{m=1}^{i_r} A_m N_{m,k}(r) \quad , \quad \varphi_\theta = \sum_{m=1}^{i_r} B_m N_{m,k}(r) \quad , \quad w = \sum_{m=1}^{i_r} C_m N_{m,k}(r) \quad ; \quad i_r = N_r + k - 2$$
(4)

ここで、 $N_{m,k}(r)$ は、正規化された B-spline 関数であり、 $N_r \geq k - 1$ は、それぞれ区分点の数と spline 次数である。したがって、式(4)を式(3)に代入して、選点法を適用すれば、次式の代数方程式が得られる。

$$\{R\} = \{R_L\} + \{R_B\} = [Z]\{C\} - \{P\} = 0 , \{C\}^T = \{A_1, A_2, \dots, A_{i_r}, B_1, B_2, \dots, B_{i_r}, C_1, C_2, \dots, C_{i_r}\}$$
(5)

ただし、上式の係数マトリックス [*Z*]は、k-1を3次に仮定すると $3i_r \times (3N_r + M)$ の正方行列になる。 **2.2 扇形 Mindlin 板の支配方程式** 図 1に示すように、等分布荷重 *q* を受ける扇形 Mindlin 板の3元連 立偏微分方程式¹⁾は、無次元極座標系 ($\xi = \theta/\phi, \eta = (r - R_i)/B$)を用いると、次式で表される。

$$\frac{2-\nu}{2}\frac{1}{R^2\phi}\frac{\partial\varphi_r}{\partial\xi} + \frac{1+\nu}{2}\frac{1}{R\phi}\frac{\partial^2\varphi_r}{\partial\eta\partial\xi} - \frac{1-\nu}{2}\left\{\frac{1}{R^2}\varphi_\theta - \frac{1}{R}\frac{\partial\varphi_\theta}{\partial\eta} - \frac{\partial^2\varphi_\theta}{\partial\eta^2}\right\} + \frac{1}{R^2\phi^2}\frac{\partial^2\varphi_\theta}{\partial\xi^2} - \frac{\kappa GhB^2}{D}\left(\varphi_\theta + \frac{1}{BR\phi}\frac{\partial W'}{\partial\xi}\right) = 0$$
(6-a)

$$\frac{\partial^2 \varphi_r}{\partial \eta^2} + \frac{\nu}{R} \frac{\partial \varphi_r}{\partial \eta} - \frac{3 - \nu}{2R^2 \phi} \frac{\partial \varphi_{\theta}}{\partial \xi} + \frac{1 + \nu}{2} \frac{\partial^2 \varphi_{\theta}}{\partial \eta \partial \xi} + \frac{1 - \nu}{2R^2 \phi^2} \frac{\partial^2 \varphi_r}{\partial \xi^2} - \frac{1}{R^2} \varphi_r - \frac{\kappa G h B^2}{D} \left(\varphi_r + \frac{h}{B} \frac{\partial W'}{\partial \eta} \right) = 0$$
(6-b)

$$\frac{\kappa GB^4}{Dh} \left\{ \frac{h}{B} \frac{\partial \varphi_r}{\partial \eta} + \left(\frac{h}{B} \right)^2 \frac{\partial^2 W'}{\partial^2 \eta} + \frac{1}{R\phi} \frac{h}{B} \frac{\partial \varphi_{\theta}}{\partial \xi} + \frac{1}{R^2 \phi} \left(\frac{h}{B} \right)^2 \frac{\partial^2 W'}{\partial \xi^2} + \frac{1}{R} \frac{h}{B} \varphi_r + \frac{1}{R} \left(\frac{h}{B} \right)^2 \frac{\partial W'}{\partial \eta} \right\} + \frac{qB^4}{Dh} = 0$$
(6-c)

ただし、 $B = R_i(\lambda - 1)$ は板幅、 $\lambda = R_o/R_i$ は半径比、 ϕ は中心角、rは半径であり、 $R_i \ge R_o$ はそれぞれ 扇形板の内径と外径を示す。また、 $D = Eh^3/\{12(1-v^2)\}$, W' = w/h, $R = \{\eta + 1/(\lambda - 1)\}$, vはポアソン比, hは

キーワード 扇形厚板, spline 関数,collocation method,曲げ解析,Mindlin 板理論 〒457-8532 名古屋市南区白水町 40 都市環境デザイン学科 電話 052-612-5571

板厚, κ はせん断修正係数であり、 E はヤング係数, G はせん断弾性係数である。

ここで、半径方向の2つの直線辺を単純支持と仮定すれば、それぞれ独立した3つの変位関数 $arphi_r, arphi_ heta, W'$ は、

 $\varphi_{r} = \sum \sum A_{mn} N_{n,k}(\eta) \sin m\pi\xi, \\ \varphi_{\theta} = \sum \sum B_{mn} N_{n,k}(\eta) \cos m\pi\xi, \\ W' = \sum \sum C_{mn} N_{n,k}(\eta) \sin m\pi\xi; \\ m = 1, 2, \dots, r, n = 1, 2, \dots, i_{r}$ (7)

で表される。したがって、式(7)を式(6)に代入すると、3 元連 立常微分方程式に書き換えられる。また、2 つの円弧辺で与え られる境界条件は、それぞれ()固定辺(C): $W'=0, \varphi_r=0, \varphi_{\theta}=0$ 、 ()単純支持辺(S): $W'=0, \varphi_{\theta}=0, M_r=0$ 、()自由辺(F): $M_r=0, M_{r\theta}=0, Q_r=0$ で示される。これらの連立微分方程式に、先に 定式化した選点法を適用すれば、内部残差と境界残差をそれぞ れ零と置くことにより、代数方程式に変換できる。

ここでは、等分布荷重を受ける 3.数値計算例および考察 扇形厚板の曲げ解析を示す。ただし、級数項rは、301項を用 い、またv = 0.3、 $\kappa = 5/6$ を用いる。表 1は、2つの円弧辺 が種々の境界条件を有する扇形厚板のたわみおよび断面力の 収束性に与える離散点の数 N, の影響が示してある。ここで、 中心角 =60°、半径比 R₀/R_i=2.0、幅厚比 B/h=10 とし、離 散点の数は11から251まで変化をさせている。また、比較の ために、Kobayashiらによる解析解1)も示してある。これより、 離散点の数を増やすと一定値へ安定した収束性が得られており、 解析解ともよく一致した結果が得られている。また、表 2には、 2つの円弧辺が固定された扇形厚板のたわみおよび断面力に与え る中心角 と幅厚比 B/h の影響が示してある。ここで、離散点の 数を 251 とし、中心角を 30°から 120°まで変化をさせ、幅厚 比は 5,10,50 としている。これより、幅厚比が増えるとたわみ および曲げモーメントの値は減少し、せん断力は増大することが わかる。また、図-2には、2つの円弧辺が固定された扇形厚板 の中央断面(=0.5)における曲げモーメント Mt の分布に与え る幅厚比の影響が示してある。ここで、中心角 =60°、半径比 R₀/R_i=2.0 とし、幅厚比は 5, 10, 50 と変化をさせ検討を行った。 これより、幅厚比が小さくなると、曲げモーメントの最大値は大 きくなり、また短い円弧辺での負曲げモーメントが大きくなり、 非対称な分布性状を示す。

4. あとがき 得られた結果をまとめると、次のようになる。
(1)本手法を用いれば、数値積分公式を用いずに連立微分方程式
を解くことができる。(2)離散点の数を増やすと、解の安定した

表 - 1 扇形 Mindlin 板のたわみと断面力の収束性と 精度比較: R₀/R_i=2.0, =60°, B/h=10, k-1=3

		=0.5, =0.5			=0.5, =0
B.C	Nr	w	Mt	Mr	Qr
	11	2.331	1.405	3.322	4.758
	51	2.868	1.806	4.071	6.504
C-C	101	2.889	1.822	4.099	6.578
	151	2.892	1.824	4.105	6.592
	201	2.894	1.825	4.107	6.597
	251	2.894	1.826	4.107	6.599
	Exact	2.896	1.827	4.109	6.603
	11	7.270	4.215	7.325	4.642
	51	8.253	4.848	8.324	5.297
S-S	101	8.288	4.870	8.360	5.320
	151	8.295	4.875	8.366	5.325
	201	8.297	4.876	8.369	5.326
	251	8.298	4.877	8.370	5.327
	Exact	8.300	4.885	8.372	5.328
	11	149.2	40.33	-0.463	7.793
	51	128.9	36.03	1.035	7.372
F-F	101	128.4	35.94	1.087	7.365
	151	128.4	35.92	1.097	7.364
	201	128.3	35.91	1.100	7.364
	251	128.3	35.91	1.102	7.364
	Exact	128.3	35.90	1.104	7.363
	multipliers	$(aB^4 \times 10^{-3})/D$	$aB^2 \times 10^{-2}$	$aB^2 \times 10^{-2}$	aB x 10

表 - 2 扇形 Mindlin 板のたわみと断面力に与える 中心角と幅厚比の影響; R₀/R_i = 2.0.k-1=3

					,
			;	=0.5, =0	
B/h		W	Mt	Mr	Qr
	30	2.213	3.050	2.557	4.323
5	60	3.974	2.046	4.144	6.380
	90	4.143	1.431	4.212	6.319
	120	4.097	1.298	4.146	6.173
	30	1.622	2.763	2.596	5.216
10	60	2.894	1.826	4.107	6.599
	90	3.015	1.361	4.185	6.317
	120	2.990	1.280	4.139	6.176
	30	1.405	2.615	2.593	5.860
50	60	2.513	1.732	4.049	6.580
	90	2.625	1.328	4.130	6.205
	120	2.609	1.262	4.094	6.085
	multipliere	(= D4 40-3) /D	~D ² 40 ⁻²	-D ² 40 ⁻²	aB v 10

収束状態が示され、またその収束値は、解析解と良く一致した結果を示している。(3)曲げモーメントの値は、 幅厚比や半径比に依存する。

参考文献 1) Kobayashi, H. and Turvey, G.J.: Elastic small deflection analysis of annular sector Mindlin plates. Int. J. Mech. Sci., Vol. 36, pp. 811-827, 1994. 2) 水澤,近藤(田仲):Differential Quadrature法を用いた 扇形Mindlin板の振動解析, 土木学会論文集, No. 661/I-53, pp. 221-230, 2000. 3) 後藤、水澤:Spline選点最小二 乗法を用いたMindlin板の振動解析,土木学会年講, I-342,2004.