せん断変形する構造物用耐震ダンパーの開発

九州共立大学大学院 学 柴山 英和 九州共立大学 正 荒巻 真二・烏野 清 東邦亜鉛㈱ 八木 貴雄

1、はじめに

兵庫県南部地震によって、古い木造家屋が倒壊し、その後の火災によって大被害を受けた。そこで、地震時における一般住宅の揺れを低減できる、安価で信頼性の高い減衰ダンパーが開発できれば、耐震補強費を軽減させることが出来るものと思われる。本研究は、地震時にせん断変形する住宅等の構造物に設置する小型ダンパー開発を目的として、静的載荷試験を実施し、履歴特性等について検討を行ったものである。次に、木造骨組を振動台上に設置し、ダンパーの有・無による地震応答特性の違いから、その制震効果を明らかにした。

2、静的載荷試験

著者等はすでに橋梁耐震用鉛柱ダンパーを開発し、鉛柱がダンパーとしての十分な機能を有している事を確認している。木造住宅用鉛ダンパーは、橋梁用に比べて小型であることから、鋳造法ではなく、押し出して製作した鉛柱部分(シャフト)と金型で製造した取付部(鍛造額板)を一体化する製造法(溶解法)で作成した。図 - 1 にダンパーの寸法を示す。

図 - 2 に静的載荷試験装置を示す。木造骨組の柱と土台(断面 105×105mm)・桁(150×105mm)をほぞ構造で結合させ、

大きなせん断変形時に、柱が土台および桁から外れないよう結合部をカスガイで止め、載荷装置に設置した。骨組は S1~S4 の 4 体製作し、斜材の有・無、ダンパーの有・無による 4CASE の試験を実施した。設置角度は前年度の試験において、最適であった 45 度とした。鉛ダンパーは引張力による履歴エネルギーを利用することから、逆向きに設置したダンパーと組み合わせて 1 対とし、柱および土台とダンパーの接合部は鋼板で挟み、皿ねじで固定した。

図 - 3 は斜材無の木造骨組(S1)に対して静的載荷試験を連続 2 回行った結果を示す。1 回目と 2 回目を比較すると履歴形状が大きく異なっており、2 回目の試験では骨組にガタが生じ、剛性が低下しているため、各 CASE の試験とも履歴エネルギーが最も大きい 1 回目のデータを用いて検討することとした。図 - 4 は斜材有の骨組に対するダンパー有・無の影響を示したもので

ある。ダンパー無の履歴曲線では水

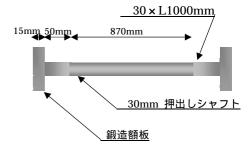
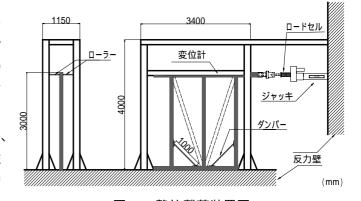
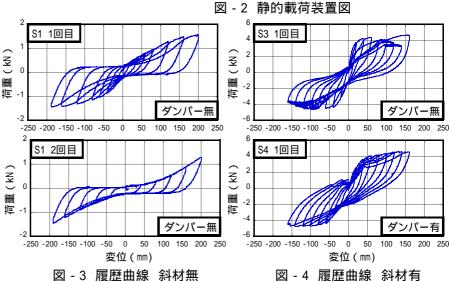




図 - 1 鉛ダンパー

キーワード: 耐震ダンパー,静的試験,振動実験,せん断変形

連絡先:〒807-8585 北九州市八幡西区自由ヶ丘 1-8 九州共立大学 TEL093-693-3226,093-693-3226

平変位 50mm 以上になると荷重が低下している。これはほぞ部分の摩擦力等の低下によるものと考えられる。ダ ンパーを用いると、履歴エネルギーが大きくなっていることが判る。しかし、水平変位が大きくなるにつれて、 斜材は横にはらみ、取付部の釘の緩みや損傷などで骨組の剛性がかなり低下していた。

図 - 5 は 4CASE に対して実施した静的載荷試験結果である。鉛ダンパ ーによる履歴エネルギーの増加は斜材有・無とも現れているが、特に斜材 無の場合に顕著である。

3、動的試験

図 - 6 に示すように木造骨組を振動台に設置し、動的試験を実施した。 現道路橋示方書における TYPE の第 種地盤用の地震波 3 種類を入力 させた。振動台の性能が、最大水平変位 ± 15cm であることから、最大加 速度を70%に低減して入力している。

図 - 7 は TYPE 、第 種の地震波 1 を斜材有・無の骨組に、入 力した時の骨組の相対変位を比較したものである。斜材有では、 ダンパー有・無による差はほとんどみられなかった。一方、斜材 無の場合には、ダンパー設置による制振効果がみられた。これは、 引張側のダンパーの軸力によるものである。

表 - 1 は 3 種類の地震波を入力した時の最大相対変位と制振効 果を示したものである。表中の骨組 - 7,9 はなるべく骨組の剛性低 下が制振効果に影響を及ぼさないよう、組み立て直後の骨組に対 してダンパー有・無の順に試験を実施した。一方、骨組・4、5、6、 7、8、10は剛性低下後に実施したものである。

表の結果より、剛性低下していない骨組では斜材有の場合、低

下率が 0.8~1.0 と小さい。これは 斜材が変形を強く拘束しているた めである。斜材無では 0.4~0.5 と 低下率が大きくなっている。一方、 剛性低下した骨組では斜材有で 0.6 ~0.7、斜材無で 0.4~0.5 の低下率 となっており、ダンパーが本震後の

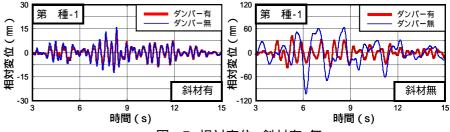


図 - 7 相対変位 斜材有・無

大きな余震に対して有効であることを示している。

一般木造住宅の剛性は本試験に用いた斜材有より小さく、 カスガイで補強した斜材無の中間であることが、共振曲線よ り明らかとなっている。したがって、本鉛ダンパーを用いる ことにより、一般木造住宅の耐震性向上を図ることが十分可 能であると考えられる。

4、まとめ

本研究では木造住宅を対象として耐震ダンパー試験を実施 したが、一般に他のせん断変形する構造物系に対しても、柱 剛性の大きさに対応した断面のダンパーを用いれば、木造住 宅と同様に応用できるものと考えられる。

本研究は「 九州建設弘済会の研究助成」を受けて実施さ れたものである。

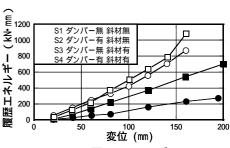
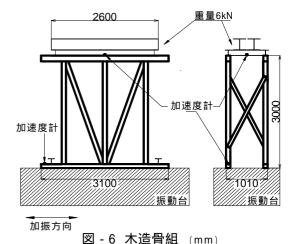



図 - 5 履歴エネルギー

表 - 1 :	最大相対変位と制震効果
---------	-------------

MILLE /C T	\\\ \	日加亚口	H3.11°		第種	
剛性低下	斜材	骨組番号	タンバー	1	2	3
無	有	9	無	16	19	25
			鉛	15	19	21
			低下率	0.94	1.00	0.84
	無	7	無	102	91	107
			鉛	42	44	44
			低下率	0.41	0.48	0.41
	有	4	無	28	31	39
			鉛	19	22	25
			低下率	0.68	0.71	0.64
		7	無	18	25	30
			鉛	14	13	20
			低下率	0.78	0.52	0.67
		平均值		0.73	0.61	0.65
	無	5	無	104	118	115
有			鉛	48	38	43
			低下率	0.46	0.32	0.37
		8	無	106	110	112
			鉛	49	71	57
			低下率	0.46	0.65	0.51
		10	無	97	103	111
			鉛	56	47	58
			低下率	0.58	0.46	0.52
		平均值	五下率	0.50	0.47	0.47