確率システム同定法による構造物振動特性自動推定への適用

長崎大学大学院	学生員	大岩根健吾	長崎大学工学部	フェロー	岡林	林隆敏
長崎大学工学部	正会員	奥松俊博	福州大学土木建築工程学院	非会員	呉	慶雄

<u>1.はじめに</u>

構造物の健全度評価を振動特性(振動数・減衰定数・振動モード)から評価するためには,微細な振動数変化を検出 できるシステムが必要である.本研究では,ERA法¹⁾,およびERA/DC法¹⁾を用いて対象とする構造同定モデルの 振動特性推定を行い,その精度を数値シミュレーションより検証した.

2.シミュレーション概要

対象構造同定モデルは5質点系モデルとし,構造モデルを図-1 に示す.このモデルの諸元を表-1に,1~5次までの固有振動数 を表-2に示す.また,振動モードを図-2に示す.構造モデルの 各節点に外力が作用する場合の運動方程式は次式のように表すこ とができる.

 $M\ddot{\mathbf{x}}(t) + D\dot{\mathbf{x}}(t) + K\mathbf{x}(t) = \mathbf{f}(t) \quad \mathbf{y}(t) = C\mathbf{x}(t) \tag{1}$

ここに, *M*, *D*, *K* はそれぞれ質量マトリクス, 減衰マトリクス, 剛 性マトリクス, *C* は観測マトリックスである.また, *f*(*t*) は外力 ベクトルである.本研究では節点番号1~5の水平方向に,互いに 独立な白色雑音を与えた応答シミュレーションを行った.

3. 振動特性推定法

1)ERA 法(The Eigensystem Realization Algorithm)

構造同定手法として ERA 法,および ERA/DC 法を用いた.両手法における同定手法の流れを図-3 に示す.ERA 法に関して,自己相関関数により算出した Hankel 行列は,マルコフパラメータ *Y_k = CA^{k-1}B*より

$$\boldsymbol{H}(k-1) = \begin{bmatrix} Y_1 & \cdots & Y_{\beta-1} \\ \vdots & \vdots \\ Y_{\alpha-1} & \cdots & Y_{\alpha+\beta-2} \end{bmatrix} = \boldsymbol{P}_{\alpha} \boldsymbol{A}^{k-1} \boldsymbol{Q}_{\beta}$$
(2)

と表される . P_{α} は可観測行列 , Q_{β} は可制御行列である . (2)式に おいて , k = 1の場合の Hankel 行列を特異値分解すると , $H(0) = P_{\alpha}Q_{\beta} = USV^{T} = US^{1/2}S^{1/2}V^{T}$ (3) となる . k = 2の場合 , (2)式は , $H(1) = P_{\alpha}AQ_{\beta}$ (4) となり , (3) , (4)式より , 第 m 点までの観測点を E_{m}^{T} とすると , $A = US^{-1/2}H(1)S^{-1/2}V^{T} = P_{\alpha}^{-1}H(1)Q_{\beta}^{-1}$ $C = E_{m}^{T}US^{-1/2}$ (5) 2)ERA/DC 法(The ERA with Data Correlations) マルコフパラメータの自己相関関数を考える .

 $\boldsymbol{R}_{\boldsymbol{h}\boldsymbol{h}}(\boldsymbol{k}) = \boldsymbol{H}(\boldsymbol{k}) \boldsymbol{H}^{T}(\boldsymbol{0})$

キーワード:橋梁維持管理,健全度評価,構造同定,確率システム同定法 連絡先:長崎大学工学部(〒852-8521 長崎市文教町 1-14, Tel 095-819-2626, Fax 095-819-2617)

(6)

$$= \begin{bmatrix} \sum_{i=1}^{\beta} Y_{k+i} Y_i & \cdots & \sum_{i=1}^{\beta} Y_{k+I} Y_{\alpha+i-1}^T \\ \vdots & \vdots \\ \sum_{i=1}^{\beta} Y_{k+\alpha+i-1} Y_i^T \cdots & \sum_{i=1}^{\beta} Y_{k+\alpha+i-1} Y_{\alpha+i-1}^T \end{bmatrix} = \boldsymbol{P}_{\alpha} \boldsymbol{A}^{k} \boldsymbol{Q}_{c}$$
(7)

(7)式において k = 0 , k = 1 の場合 , $R_{hh}(0) = H(0)H^{T}(0) = P_{\alpha}Q_{c}$ $R_{hh}(1) = H(1)H^{T}(0) = P_{\alpha}AQ_{c}$ (8)

となる . ERA 法と同様に , $R_{hh}(0)$ の特異値分解を考えると , $R_{hh}(0) = P_a Q_c = USV^T = US^{1/2}S^{1/2}V^T$ (9)

(8),(9)式より,第*m* 点までの観測点を *E*^{*T*}_mとすると,

 $A = US^{-1/2} R_{hh}(1) S^{-1/2} V^T = P_a^{-1} R_{hh}(1) Q_c^{-1} C = E_m^T U S^{1/2}$ (10)

(5),(10)式より, *A*の固有値から固有値の実数部分 X_{Re} と虚数部分 X_{Im} が求められる. X_{Re} , X_{Im} を用いて, Δ をサンプリング時間と すると,次のように固有円振動数 ω_k ,減衰定数 h_k が得られる. $h_k \omega_k = (-1/\Delta) \ln \sqrt{X_{\text{Re}}^2 + X_{\text{Im}}^2}, \omega_k \sqrt{1 - h_k^2} = (1/\Delta) \tan^{-1}(X_{\text{Im}} / X_{\text{Re}})$ (11) <u>4.振動特性結果</u>

ERA 法, および ERA/DC 法に基づいて, 30 秒間の速度応答データ を1回区分として合計100回発生させて,振動数,減衰定数,振動 モードの推定を行った.また, ERA 法, ERA/DC 法ともに,全点観 測による推定を行った ERA 法による合計100回の振動数推定軌跡, 減衰定数推定軌跡をそれぞれ図 - 4,図 - 5 に示す.これらの結果よ り,各次数における振動数と減衰定数が良好に推定できていること が確認できる.

図 - 6 は ERA 法により推定された振動モードである.推定された 振動モードの平均値をプロットすると,振動モードが得られる.図 - 2 と比較すると,良好な振動モードの推定が実現できていることが 確認できる.

次に,両手法における振動特性推定結果を表-3 に示す. この表より,振動数,減衰定数ともに,ほぼ同じ精度で推定 できていることが分かる.振動数に着目してみると,両手法 とも,全次数において変動係数が1%前後と精度良く推定でき ている.減衰定数に着目してみると,1次の平均値,変動係数 が,他の次数に比べて若干高めの推定となっている.ERA/DC 法では,(6)式の値が時間と共に急激に減衰するために,少な いデータで構造同定が可能であると考えられる.

<u>5.まとめ</u>

ERA 法,および ERA/DC 法を用いて,5 質点系モデルの振動特性推定を行い,その精度検証を行った.両手法の振動特性推定精度は,振動数,減衰定数ともにほぼ同精度であることが確認できた.また,実現化手法による構造同定では,振動モードが比較的簡易に推定できることが確認できた.今後は,実橋における計測を行うことで,本手法の有効性を実測において検証したい.

[参考文献]1) Jer-Nan Juang: Applied System Identification, Prentice Hall, 1993.11

5次 4次

図 - 5 ERA 法による減衰定数推定

図 - 6 ERA 法による振動モード

表-3 振動特性推定結果

5質点系モデル		固有振動数(Hz)			減衰定数			
		平均值(Hz)	標準偏差(Hz)	变動(級)(%)	平均值	標準偏差	変動綴数	
1次	ERA法	1.220	0.01450	1.188	0.02808	0.01069	38.08	
	ERA/DC法	1.220	0.01449	1.188	0.02810	0.01064	37.87	
2次	ERA法	3.563	0.02887	0.8104	0.02250	0.008063	35.85	
	ERA/DC法	3.563	0.02859	0.8024	0.02250	0.008018	35.64	
3次	ERA法	5.613	0.04112	0.7326	0.02037	0.006510	31.96	
	ERA/DC法	5.614	0.04052	0.7219	0.02038	0.006522	31.99	
4次	ERA法	7.214	0.04637	0.6428	0.01838	0.005501	29.92	
	ERA/DC法	7.213	0.04594	0.6369	0.01837	0.005504	29.96	
5次	ERA法	8.221	0.05014	0.6099	0.01965	0.005476	27.86	
	ED A/DC+	e 220	0.05044	0.6126	0.01077	0.005516	27.90	