鋼床版上のコンクリート製壁高欄のひび割れに関する温度応力解析

(株) 栗本鐵工所 正会員 〇石本圭一・津

〇石本圭一・津田久嗣・辻野洋慶

1. はじめに

従来の研究¹⁾から、コンクリート床版上の壁高欄に比べ、鋼床版上 の壁高欄の方がひび割れの多いことが知られている.本研究では、鋼 床版上の壁高欄のひび割れ抑制対策について行った実験をFEM温 度応力解析により再現し、実験結果との照合と発生のメカニズムを検 証することを目的とする.

2. 解析概要

2.1 解析モデル

本解析と比較する実験の供試体断面寸法を図-1に示す. この供試体を図-2に示す3次元FEM解析モデルに変換した. 2.2 解析条件

本解析の比較対象となる実験で用いたコンクリートの配合を 表-1に示す.表の配合を基に設定した温度応力解析に用いる特性値 を表-2に示す.本数値は、コンクリートの施工・養生方法・部材の 温度上昇量・舗装の打設方法などの影響を反映し設定した.

- 3. 供試体各部に作用する外気温の換算
- 3.1 鋼床版

鋼床版に与えられる日 射量(熱量)は被日射面の 太陽に対する角度で大き く異なるため,鋼床版部に

用いる外気温は鋼床版下面(日陰)の実 測値とした.その場合,実測値より昼間 の温度上昇量が小さくなるので,日射の 影響を下式により等価な外気温に換算 して考慮した.

 $t_e = t_0 + A_{su} \cdot J \swarrow \alpha_0$

- t_e:相当外気温(℃)
- t₀:外気温(℃)
- A_{su}:表面の日射吸収率

(鋼床版と舗装は1.00)

J:日射量(W/m² h)

- α₀:熱伝達率(W /m² ℃)
- 上式中の日射量は、実験期間中に

キーワード : 鋼床版 壁高欄 ひび割れ 温度応力解析 連 絡 先 : 〒590-0958 堺市宿院町西 1-1-3 TEL : 072-238-9906

図ー2 FEM解析モデル

表-1 コンクリートの配合

設計	設計基 進始度	骨材最 十寸法	目標	目 標 空気量	セメント	W/C	s/a	単位量 (kg/m³)					
(日)	(N/mm ²)	(mm)	(cm)	エ×1重 (%)	の種類	(%)	(%)	W	С	S①	\$Q	G	Α
28	30	20	8	4. 5	N	49	43. 7	167	341	528	228	1003	3. 41

表 一2 温度解析に用いた特性値									
区分	項目		鋼床版	壁高欄コンクリート	<i>ヴ−</i> スアスファルト				
温度解析	解析モデル		3 次元 FEM 解析モデル(舗装 3 分割施工)						
	設計基準強度	: N/mm²	—	30.0(設計材齢28日)	-				
	セメントの種類		-	普通ポルトランドセメント	_				
	単位セメント量	: kg/m³	-	341	_				
	断熱温度上昇式	: °C	_	$Q(t) = Q_{\infty} (1 - e^{-\gamma t^{\delta}})$	_				
	熱伝導率	: W/m°C	83. 5	2. 28	0. 157				
	密度	: kg/m³	7700	2300	1025				
	比熱	: kJ/kg°C	0. 435	0.96	2.09				
	熱伝達率	: W/m²°C	鋼床版上面 30 その他の面 10	側面 8(材齢 0~7d) 13(材齢 7d~) 上面 13(材齢 0~1d,7d~) 8(材齢 1 d~7d)	30				
	初期温度	: °C	30.0	32. 0	25→460°C (0∼27min)				
	外気温	: °C	鋼床版上面 相当外気温 その他の面 実測 data (日陰)	実測データ(日陰)	相当外気温				

FAX : 072-225-1254

応力の

- 1-480
- 3.2 コンクリート

コンクリートに作用する外気温は、実験での外気温 実測データを用いた、ただし、コンクリート材齢3日 まではコンクリート養生のため供試体をブルーシート で覆ったので、その間は日陰での外気温実測データを 用いた.相当外気温と外気温の関係を図-3に示す.

4. 解析結果

4.1 応力解析の主応力履歴

図-4に供試体支間中央部において材齢 10 日目ま でのコンクリートに作用する主応力の履歴を示す.材 齢5,7,10日目に発生応力が引張強度に近い値を示し ている.比較実験では材齢10日目にひび割れが観測さ れており、傾向が一致している、図-3と図-4の関 係よりひび割れはその発生日と発生日前日の相対外気 温の差が大きい時に発生している傾向が見受けられる. 4.2 ひび割れ発生時の応力分布

図-5に材齢 10 日目のコンクリートの最大主応力 発生時の主応力分布を示す、支点部では供試体内側の 鋼床版近傍に最大引張応力が発生している、支間中央 部では最大引張応力が壁高欄中心部やや上方で発生している.

実験では供試体外側の鋼床版近傍からひび割れが発生し始 めており、解析結果と傾向が一致している、この引張応力は支 点部横桁により橋軸方向変位が拘束され、鋼床版が外側にはら んだことにより生じたと考えられる.

4.3 舗装敷設時の応力分布

図-6に支間中央部に舗装を敷設した際の最大主応力発生
 時の主応力分布を示す、舗装敷設前と比べ、支間中央部外側で 最大引張応力が発生する傾向がより顕著になっている.

- 4.4 実橋におけるひび割れの抑制に対する一提案 鋼床版上の壁高欄ひび割れ抑制対策を以下に提案する.
 - 1) 最大主応力が発生する支間中央部に目地を配置する.
 - 舗装敷設時の対策として、支間中央部で引張応力が大き 2) くなる壁高欄外側の鉄筋量を増やす.
- 5. まとめ
- 1) 相当外気温の最大と最小の差が大きく,発生引張応力が大 きくなった時にひび割れが発生しやすい状態となる.
- 2) 横桁が橋軸方向変位を拘束することにより支間中央部の 壁高欄外側に最大引張応力が発生することが、ひび割れ発 生の要因となる. その傾向は舗装敷設時に顕著となる.
- 3) ひび割れ抑制対策としては壁高欄外側の鉄筋量を増やす ことや、目地を横桁間に配置することが考えられる.

参考文献:1)橋場他:鋼床版上の RC 高欄のひび割れ対策検討コンクリート工学年次論文報告集, Vol.14, No.2(1992)

支間中央 支間中央付近への舗装打設時の 図-6 コンクリート横断面の主応力分布