物性探査による地盤構造の推定と地震応答解析 - 2004 年新潟県中越地震 -

早稲田大学	ΞŢ	学生会員	塚澤	幸子
清水建設株式会	社	正会員	佐々木	直之
早稲田大学		正会員	張	至鎬
早稲田大学	フュ	ロー会員	濱田	政則

1.はじめに

2004年10月23日に発生した「新潟県中越地震」では, 上越新幹線浦佐~長岡間において走行中の新幹線の脱線 事故が起きた.本研究では,脱線原因の究明のための基 礎資料を得ることを目的とし,物理探査により地盤構造 の推定を行った.さらに,応答解析により新幹線脱線現 場付近の地表面応答を推定し,構造物の応答特性につい て検討した.

2. 鉄道車両脱線に関する研究

大きく振動する軌道上を走行する車両の挙動に関して は,宮本ら¹⁾により,図1のように,構造物の振動数に よって脱線の限界変位振幅が与えられている.これは正 弦波5波,上下動なしで計算シミュレーションによって 得た結果である.これによると,振動数1Hz以上では脱 線に関する限界変位は約10cmとなることが分かる.

図1. 脱線を考慮した限界振幅(文献1,加筆)

3.物理探査と微動アレー観測による地盤構造の推定

(1) 脱線現場付近の地形・地質

脱線現場付近の地質断面図²⁾を図2に示す.この図よ り,新幹線脱線地点は河岸段丘と沖積低地の境にあり, 10~15m程河岸段丘の方が高くなっていることが分かる. また,この地域のボーリング柱状図²⁾から,河岸段丘と 扇状地では表層地盤が比較的厚く基盤が深度約15~23m 以深にあるが,沖積低地では表層地盤は薄く,基盤は深 度6~13m以深と浅い.

表面波探査では,人工的に発生させた表面波をセンサーにより受信し,解析を行い,表層地盤におけるS波速度 構造を求めた.これを地質図と併せて図3に示すが,前述の地形・地質条件とほぼ整合性がとれている.

(3) 微動アレー探査による地盤構造の推定

次に,地盤中のS波速度構造をより深くまで把握する ために,図3に示す3点で微動アレー観測を行い,S波速 度や密度などの地盤データを得た.ここでは,新幹線脱 線開始付近のA地点での観測結果を表1に示す.なお, この結果は,後述の地震応答解析に用いた.

表1. 微動アレー探査の結果(A地点)

層号	Vs(m/s)	Vp(kg/cm ³)	密度(kg/cm ³)	層厚(m)	上面深度(m)
1	200	1.61	1.73	17	0
2	400	1.8	1.84	44	17
3	430	1.83	1.85	26	61
4	690	2.07	1.96	51	87
5	1160	2.52	2.11	-	138

キーワード 限界変位, 地盤構造, 地震応答解析, 固有周期, 変位振幅 連絡先 〒169-8555 東京都新宿区大久保 3-4-1 早稲田大学 濱田研究室 TEL03-3208-0349

4.地盤の一次元応答解析

(1) 地盤モデルと入力地震動

新幹線沿線におけるボーリングデータ²⁾とアレー観測 結果をもとに,地盤をモデル化した.脱線開始地点付近 のボーリング 722 の地盤モデルを図4に示す.

図4. 地盤モデル(ボーリング722)

地盤の1次元応答解析においては 脱線現場から約5km 離れた KiK-net 長岡(NIGH01)の波形³⁾を入力波として用 いた.KiK-net 長岡の波形とフーリエスペクトルを図5 に示す.なお,地震応答解析は図2に示した新幹線脱線 開始地点付近のボーリング722と地盤の性質が異なる地 点での振動を比較するため,ボーリング717,727の3箇 所で実施した.なお,解析を行った地盤の剛性低下率, 減衰定数については文献4)と文献5)の研究を参考にした.

図5. KiK-net 長岡の波形³⁾とフーリエスペクトル

(2)解析結果

各ボーリング地点における地表面応答を地盤の一次元 解析(SHAKE)により求めた.ボーリング 722 では地盤の最 大変位が 9.0cm と大きいのに対し,ボーリング 717,727 では 6.9cm, 1.5cm と小さい結果が得られた.

5. 高架橋の応答変位の推定

地震時の高架橋の応答変位の算定手順を以下に記す. 応答変位を求めるには,高架橋の固有周期の推定が必要 となるが,本研究では図6に示す高架橋の常時微動観測 の結果により求めた.なお,図中の被害ありとは,構造 物又は地盤のいずれかに何らかの損傷を受けているもの である.前述の解析から得られた地表面加速度波形から 高架橋を1自由度系として絶対変位応答を求めた.この 結果を図7に示す.図7によれば,脱線開始地点付近の 高さ 6.6m を有する高架橋の健全時での絶対応答変位は 9cm であるが 地盤の軟化を含めた何らかの被害により高 架橋の固有周期が図6に示したように0.41秒にのびたと 考えれば,高架橋の絶対応答変位は16cm と大きくなって いることが分かる.

6.まとめ

本研究では,新幹線脱線地点の高架橋の絶対応答変位 が他の地点と比較し大きくなることが確認された.また, 文献 6)によると新幹線脱線現場付近の水田では,噴砂跡 が確認されており,液状化を含めた地盤の軟化,構造物 の損傷による高架橋の変位振幅の増大が新幹線の脱線の 可能性を増大したと考えられる.

7.参考文献

- 宮本岳史他;地震時の鉄道車両の挙動解析(上下,左右 に振動する軌道上の車両運動シミュレーション),日本 機械学会論文集(C編)64 巻 626 号(1998-10)
- 2)日本鉄道建設公団 新潟新幹線建設局;上越新幹線(水 上・新潟間)地質図
- 3) 基盤強震観測網(観測点コード:NIGH01),防災科学技術 研究所
- 4)建設省土木研究所;地盤の地震時応答特性の数値解析法,土木研究所資料第1778 号昭和57年2月
- 5)緒方,安田;礫を含んだ不攪乱土の動的変形特性,第 17回土質工学研究発表会講演集昭和57年6月
- 6)塚澤幸子他;2004年新潟県中越地震における液状化調査,第40回地盤工学研究会